Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales

In strongly weathered soils, leaf litter not only returns phosphorus (P) to the soil environment, it may also modify soil properties and soil solution chemistry, with the potential to decrease phosphate sorption and increase plant available P. Using a radioactive phosphate tracer (³²P) and 1 h labor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeochemistry 2013-05, Vol.113 (1-3), p.507-524
Hauptverfasser: Schreeg, Laura A, Mack, Michelle C, Turner, Benjamin L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In strongly weathered soils, leaf litter not only returns phosphorus (P) to the soil environment, it may also modify soil properties and soil solution chemistry, with the potential to decrease phosphate sorption and increase plant available P. Using a radioactive phosphate tracer (³²P) and 1 h laboratory incubations we investigated the effect of litter inputs on phosphate sorption over two time scales: (1) long-term field litter manipulations (litter addition, control and litter removal) and (2) pulses of litter leachate (i.e. water extracts of leaf litter) from five species. Leachate pulse effects were compared to a simulated throughfall, which served as a control solution. Soil receiving long-term doubling of leaf litter maintained five-fold more phosphate in solution than the litter removal soil. In addition to the quantity of phosphate sorbed, the field litter addition treatment decreased the strength of phosphate sorption, as evaluated through extraction of sorbed ³²P using a weakly acidic ammonium fluoride solution (Bray 1). In litter removal soil, leachate pulses significantly reduced phosphate sorption in comparison to the throughfall control for all five species evaluated. However, the ability of leachate pulses to reduce phosphate sorption decreased when soil had received field litter inputs. Across soils the effect of leachate pulses on phosphate sorption increased with net sorption of dissolved organic C, with the exception of leachate from one species that had a higher index of aromatic C concentration. These results demonstrate that litter inputs, as both long-term inputs and short-term leachate pulses, can decrease the quantity and strength of phosphate sorption, which may increase the biological availability of this key nutrient.
ISSN:0168-2563
1573-515X
DOI:10.1007/s10533-012-9781-5