Important role of the angiotensin II pathway in producing matrix metalloproteinase-9 in human thoracic aortic aneurysms
Abstract Background The precise pathologic mechanisms underlying human thoracic aortic aneurysms (TAAs) remain uncertain, except that matrix metalloproteinase-9 (MMP-9) is considered a key enzyme for the degradation of extracellular matrix in aneurysm walls. The aim of this study was to elucidate th...
Gespeichert in:
Veröffentlicht in: | The Journal of surgical research 2013-07, Vol.183 (1), p.472-477 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background The precise pathologic mechanisms underlying human thoracic aortic aneurysms (TAAs) remain uncertain, except that matrix metalloproteinase-9 (MMP-9) is considered a key enzyme for the degradation of extracellular matrix in aneurysm walls. The aim of this study was to elucidate the significance of the angiotensin II (AngII) pathway to MMP-9 production in human TAA walls. Methods and results We examined the activation of Smad2, a common downstream molecule of AngII and transforming growth factor β (TGF-β) pathways, and the expression of MMP-9 in human nonsyndromic TAA walls. We observed significant increases in Smad2 activation and MMP-9 expression, associated with disruption of elastic lamellae. Using human TAA walls in ex vivo culture, we investigated whether AngII and/or TGF-β pathways are essential for MMP-9 production. Unexpectedly, TGF-β receptor inhibitor had no effect on MMP-9 production. We used PD98059, an inhibitor of extracellular signal–regulated kinase (ERK) activation, and demonstrated that PD98059 dramatically reduced MMP-9 production with attenuation of Smad2 activation. Moreover, exogenous AngII resulted in increases in Smad2 activation and MMP-9 production, in an ERK-dependent manner. Conclusion Our findings indicate that the AngII/ERK pathway has an important role in the production of MMP-9 in human nonsyndromic TAA walls. |
---|---|
ISSN: | 0022-4804 1095-8673 |
DOI: | 10.1016/j.jss.2012.12.012 |