Solution-Processed and High-Performance Organic Solar Cells Using Small Molecules with a Benzodithiophene Unit

Three small molecules named DR3TBDTT, DR3TBDTT-HD, and DR3TBD2T with a benzo[1,2-b:4,5-b′]dithiophene (BDT) unit as the central building block have been designed and synthesized for solution-processed bulk-heterojunction solar cells. Power conversion efficiencies (PCEs) of 8.12% (certified 7.61%) an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-06, Vol.135 (23), p.8484-8487
Hauptverfasser: Zhou, Jiaoyan, Zuo, Yi, Wan, Xiangjian, Long, Guankui, Zhang, Qian, Ni, Wang, Liu, Yongsheng, Li, Zhi, He, Guangrui, Li, Chenxi, Kan, Bin, Li, Miaomiao, Chen, Yongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three small molecules named DR3TBDTT, DR3TBDTT-HD, and DR3TBD2T with a benzo[1,2-b:4,5-b′]dithiophene (BDT) unit as the central building block have been designed and synthesized for solution-processed bulk-heterojunction solar cells. Power conversion efficiencies (PCEs) of 8.12% (certified 7.61%) and 8.02% under AM 1.5G irradiation (100 mW cm–2) have been achieved for DR3TBDTT- and DR3TBDT2T-based organic photovoltaic devices (OPVs) with PC71BM as the acceptor, respectively. The better PCEs were achieved by improving the short-circuit current density without sacrificing the high open-circuit voltage and fill factor through the strategy of incorporating the advantages of both conventional small molecules and polymers for OPVs.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja403318y