Toxicological Mechanisms of Nanosized Titanium Dioxide-Induced Spleen Injury in Mice after Repeated Peroral Application
Due to an increase in surface area per particle weight, nanosized titanium dioxide (nano-TiO2) has greatly increased its function as a catalyst and is used for whitening and brightening foods. However, concerns over the safety of nano-TiO2 have been raised. The purpose of this study was to determine...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2013-06, Vol.61 (23), p.5590-5599 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to an increase in surface area per particle weight, nanosized titanium dioxide (nano-TiO2) has greatly increased its function as a catalyst and is used for whitening and brightening foods. However, concerns over the safety of nano-TiO2 have been raised. The purpose of this study was to determine whether the protein kinase MAPKs/PI3-K/Akt signaling pathways and transcription factors are activated prior to or concurrent with COX-2 up-regulation in mouse spleen following exposure to 10 mg/kg BW of pure anatase nano-TiO2 by the intragastric route for 15–90 days. The study clearly showed that nano-TiO2 was deposited in the spleen and resulted in reactive oxygen species production, time-dependent splenic inflammation, and necrosis, coupled with a 12.64–64.06% increase in COX-2 and prostaglandin E2 expression, respectively. Furthermore, nano-TiO2 elevated the expressions of ERK, AP-1, CRE, Akt, JNK2, MAPKs, PI3-K, c-Jun, and c-Fos in the spleen by 1.08–6-fold with increased exposure duration, respectively. These findings suggested that nano-TiO2-induced COX-2 expression may be mediated predominantly through the induction of AP-1 and CRE and that AP-1/CRE induction occurred via the MAPKs/PI3-K/Akt signaling pathways in the spleen. Therefore, the findings suggest the need for caution when using nanomaterials as food additives. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf3035989 |