The multiplicity of massive stars

Binaries are excellent astrophysical laboratories that provide us with direct measurements of fundamental stellar parameters. Compared to single isolated stars, multiplicity induces new processes, offering the opportunity to confront our understanding of a broad range of physics under the extreme co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the International Astronomical Union 2010-07, Vol.6 (S272), p.474-485
Hauptverfasser: Sana, Hugues, Evans, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Binaries are excellent astrophysical laboratories that provide us with direct measurements of fundamental stellar parameters. Compared to single isolated stars, multiplicity induces new processes, offering the opportunity to confront our understanding of a broad range of physics under the extreme conditions found in, and close to, astrophysical objects. In this contribution, we will discuss the parameter space occupied by massive binaries, and the observational means to investigate it. We will review the multiplicity fraction of OB stars within each regime, and in different astrophysical environments. In particular we will compare the O star spectroscopic binary fraction in nearby open clusters and we will show that the current data are adequately described by an homogeneous fraction of f ≈ 0.44. We will also summarize our current understanding of the observed parameter distributions of O + OB spectroscopic binaries. We will show that the period distribution is overabundant in short period binaries and that it can be described by a bi-modal Öpik law with a break point around P ≈ 10 d. The distribution of the mass-ratios shows no indication for a twin population of equal mass binaries and seems rather uniform in the range 0.2 ≤ q = M2/M1 ≤ 1.0.
ISSN:1743-9213
1743-9221
DOI:10.1017/S1743921311011124