MNS16A tandem repeat minisatellite of human telomerase gene and prostate cancer susceptibility
Telomere dysfunction is an early event in the development of prostate cancer and telomerase (TERT) activity is detectable in the majority of prostate cancers. Genetic variation in TERT and its regulatory elements may influence prostate carcinogenesis. MNS16A, a functional polymorphic tandem repeat m...
Gespeichert in:
Veröffentlicht in: | Mutagenesis 2013-05, Vol.28 (3), p.301-306 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Telomere dysfunction is an early event in the development of prostate cancer and telomerase (TERT) activity is detectable in the majority of prostate cancers. Genetic variation in TERT and its regulatory elements may influence prostate carcinogenesis. MNS16A, a functional polymorphic tandem repeat minisatellite of TERT, has been studied in several malignancies. We determined MNS16A genotypes in an Austrian case-control study for the first time in the context of prostate cancer, comprising 1165 prostate cancer cases and 674 benign prostate hyperplasia controls with PCR. In addition to the five reported variable number of tandem repeats (VNTRs), we identified VNTR-212, a rare variant, for the first time in a European population. Multiple logistic regression analysis revealed no differences in genotype distribution between cases and controls. However, in stratified analysis, MNS16A VNTR-274 (OR = 0.25, 95% CI = 0.06-0.79, P = 0.016) and genotype 274/302 (OR = 0.13, 95% CI = 0.01-0.58, P = 0.005) were associated with a significantly decreased risk of prostate cancer in the age group >70 years. Our finding of a MNS16A genotype conferring a protective effect against prostate cancer in older men suggests a potential role of this polymorphism in prostate cancer susceptibility but demands to be validated in further studies. |
---|---|
ISSN: | 0267-8357 1464-3804 |
DOI: | 10.1093/mutage/get003 |