Rigid Ryegrass (Lolium rigidum) Populations Containing a Target Site Mutation in EPSPS and Reduced Glyphosate Translocation Are More Resistant to Glyphosate

Glyphosate is widely used for weed control in the grape growing industry in southern Australia. The intensive use of glyphosate in this industry has resulted in the evolution of glyphosate resistance in rigid ryegrass. Two populations of rigid ryegrass from vineyards, SLR80 and SLR88, had 6- to 11-f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weed science 2012-07, Vol.60 (3), p.474-479
Hauptverfasser: Bostamam, Yazid, Malone, Jenna M., Dolman, Fleur C., Boutsalis, Peter, Preston, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glyphosate is widely used for weed control in the grape growing industry in southern Australia. The intensive use of glyphosate in this industry has resulted in the evolution of glyphosate resistance in rigid ryegrass. Two populations of rigid ryegrass from vineyards, SLR80 and SLR88, had 6- to 11-fold resistance to glyphosate in dose-response studies. These resistance levels were higher than two previously well-characterized glyphosate-resistant populations of rigid ryegrass (SLR77 and NLR70), containing a modified target site or reduced translocation, respectively. Populations SLR80 and SLR88 accumulated less glyphosate, 12 and 17% of absorbed glyphosate, in the shoot in the resistant populations compared with 26% in the susceptible population. In addition, a mutation within the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) where Pro106 had been substituted by either serine or threonine was identified. These two populations are more highly resistant to glyphosate as a consequence of expressing two different resistance mechanisms concurrently. Nomenclature: Glyphosate; rigid ryegrass, Lolium rigidum Gaud. LOLRI.
ISSN:0043-1745
1550-2759
DOI:10.1614/WS-D-11-00154.1