Nrp2 deficiency leads to trabecular bone loss and is accompanied by enhanced osteoclast and reduced osteoblast numbers

Abstract Neuropilin 1 (Nrp1) and Nrp2 are transmembrane receptors that can bind class 3 semaphorins (Sema3A-G) in addition to VEGF family members to play important roles in axonal guidance, vascularization and angiogenesis, as well as immune responses. Moreover, recent evidence implicates Sema3A/Nrp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bone (New York, N.Y.) N.Y.), 2013-08, Vol.55 (2), p.465-475
Hauptverfasser: Verlinden, Lieve, Kriebitzsch, Carsten, Beullens, Ine, Tan, Biauw Keng, Carmeliet, Geert, Verstuyf, Annemieke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Neuropilin 1 (Nrp1) and Nrp2 are transmembrane receptors that can bind class 3 semaphorins (Sema3A-G) in addition to VEGF family members to play important roles in axonal guidance, vascularization and angiogenesis, as well as immune responses. Moreover, recent evidence implicates Sema3A/Nrp-mediated signaling in bone regulation. However, to date the expression of Nrp2 in bone has not been investigated and a possible role for Nrp2 in the maintenance of bone homeostasis in vivo remains unexplored. Here we show that Nrp2 , together with its possible coreceptors (Plexin A family members and Plexin D1) and class 3 semaphorin ligands, were expressed during in vitro osteogenic differentiation of bone marrow stromal cells. Moreover, Nrp2 transcript and protein levels were highly induced in hematopoietic bone marrow cell-derived osteoclast cultures. Osteoblastic as well as osteoclastic Nrp2 expression was confirmed by immunohistochemistry of the long bones of mice. Interestingly, Nrp2 knockout mice were characterized by a low bone mass phenotype which was accompanied by an increased number of osteoclasts and a decreased osteoblast count. Collectively, these data point to a physiological role for Nrp2 in bone homeostasis.
ISSN:8756-3282
1873-2763
DOI:10.1016/j.bone.2013.03.023