Comparison of different simulation methods for effective medium computer generated holograms
The arrangement of binary subwavelength structures is a promising alternative to the conventional multiheight level technique to generate computer generated holograms (CGHs). However, the current heuristic design approach leads to a slight mismatch between the target signal and experimental data. To...
Gespeichert in:
Veröffentlicht in: | Optics express 2013-05, Vol.21 (10), p.12424-12433 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The arrangement of binary subwavelength structures is a promising alternative to the conventional multiheight level technique to generate computer generated holograms (CGHs). However, the current heuristic design approach leads to a slight mismatch between the target signal and experimental data. To evaluate this deviation, a diffractive beam splitter design is investigated rigorously using a finite-difference time-domain (FDTD) method. Since the use of a rigorous Maxwell-equation solver like FDTD requires a massive computational effort, an alternative scalar approach, a fast Fourier transform beam propagation method (FFT-BPM), is investigated with a substantial higher computing speed, showing still a good agreement with the FDTD simulation and experimental data. Therefore, an implementation of this scalar approach into the CGH design process offers the possibility to significantly increase the accuracy. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.21.012424 |