A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods

This paper shows that the discontinuous Galerkin collocation spectral element method with Gauss--Lobatto points (DGSEM-GL) satisfies the discrete summation-by-parts (SBP) property and can thus be classified as an SBP-SAT (simultaneous approximation term) scheme with a diagonal norm operator. In the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2013-01, Vol.35 (3), p.A1233-A1253
1. Verfasser: Gassner, Gregor J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows that the discontinuous Galerkin collocation spectral element method with Gauss--Lobatto points (DGSEM-GL) satisfies the discrete summation-by-parts (SBP) property and can thus be classified as an SBP-SAT (simultaneous approximation term) scheme with a diagonal norm operator. In the same way, SBP-SAT finite difference schemes can be interpreted as discontinuous Galerkin-type methods with a corresponding weak formulation based on an inner-product formulation common in the finite element community. This relation allows the use of matrix-vector notation (common in the SBP-SAT finite difference community) to show discrete conservation for the split operator formulation of scalar nonlinear conservation laws for DGSEM-GL and diagonal norm SBP-SAT. Based on this result, a skew-symmetric energy stable discretely conservative DGSEM-GL formulation (applicable to general diagonal norm SBP-SAT schemes) for the nonlinear Burgers equation is constructed. [PUBLICATION ABSTRACT]
ISSN:1064-8275
1095-7197
DOI:10.1137/120890144