Distance-increasing mappings from binary vectors to permutations that increase hamming distances by at least two

In this correspondence, for any k ges 2, we first propose two constructions of (n,k) distance-increasing mappings (DIMs) from the set of binary vectors of length n to the set of permutations of the same length that strictly increase the Hamming distance by at least k except when it is obviously not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-04, Vol.52 (4), p.1683-1689
1. Verfasser: CHANG, Jen-Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this correspondence, for any k ges 2, we first propose two constructions of (n,k) distance-increasing mappings (DIMs) from the set of binary vectors of length n to the set of permutations of the same length that strictly increase the Hamming distance by at least k except when it is obviously not possible. Next, we prove that for any k ges 2, there is a smallest positive integer n k such that an (n,k) DIM can be constructed for any n ges n k . An explicit upper bound on n k is also given
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.871037