A 3D-to-2D Transform Algorithm for Incorporating 3D Antenna Radiation Patterns in SCM

We present a method to incorporate the effect of the three-dimensional (3D) antenna radiation patterns into a two-dimensional (2D) multiple-inputmultiple-output (MIMO) channel model. The proposed method is a low-complexity technique that increases the accuracy of existing 2D spatial channel model (S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2009, Vol.8, p.815-818
Hauptverfasser: Kanj, H., Lusina, P., Ali, S.M., Kohandani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a method to incorporate the effect of the three-dimensional (3D) antenna radiation patterns into a two-dimensional (2D) multiple-inputmultiple-output (MIMO) channel model. The proposed method is a low-complexity technique that increases the accuracy of existing 2D spatial channel model (SCM) proposed by 3GPP for performance analysis of long-term evolution (LTE) MIMO. Using a realistic 3D antenna field pattern and the 2D 3GPP SCM, the 3D-to-2D transform algorithm (3D-2D-TF) gives a 5% outage capacity within 0.5 b/s/Hz when compared to a higher complexity averaging approach using 18-cut planes (18-CP) of the 3D radiation pattern. This is achieved with 6% of the run-time complexity. By not including the elevation information, the original SCM 2D model gives an outage capacity prediction error of up to 2.4 b/s/Hz as compared to the 18-CP averaging approach. The 3D-2D-TF is therefore a promising low-complexity candidate that increases the accuracy of 2D channel models for MIMO 4G performance evaluations.
ISSN:1536-1225
1548-5757
DOI:10.1109/LAWP.2009.2026301