Almost Sure Convergence Theorem and Strong Stability for Weighted Sums of NSD Random Variables

In this paper, Kolmogorov-type inequality for negatively superadditive dependent (NSD) random variables is established. By using this inequality, we obtain the almost sure convergence for NSD sequences, which extends the corresponding results for independent sequences and negatively associated (NA)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2013-04, Vol.29 (4), p.743-756
Hauptverfasser: Shen, Yan, Wang, Xue Jun, Yang, Wen Zhi, Hu, Shu He
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Kolmogorov-type inequality for negatively superadditive dependent (NSD) random variables is established. By using this inequality, we obtain the almost sure convergence for NSD sequences, which extends the corresponding results for independent sequences and negatively associated (NA) sequences. In addition, the strong stability for weighted sums of NSD random variables is studied.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-012-1723-6