Geodetic Number versus Hull Number in $P_3$-Convexity

We study the graphs $G$ for which the hull number $h(G)$ and the geodetic number $g(G)$ with respect to $P_3$-convexity coincide. These two parameters correspond to the minimum cardinality of a set $U$ of vertices of $G$ such that the simple expansion process which iteratively adds to $U$ all vertic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2013-01, Vol.27 (2), p.717-731
Hauptverfasser: Centeno, C. C., Penso, L. D., Rautenbach, D., Pereira de Sá, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the graphs $G$ for which the hull number $h(G)$ and the geodetic number $g(G)$ with respect to $P_3$-convexity coincide. These two parameters correspond to the minimum cardinality of a set $U$ of vertices of $G$ such that the simple expansion process which iteratively adds to $U$ all vertices outside of $U$ having two neighbors in $U$ produces the whole vertex set of $G$ either eventually or after one iteration, respectively. We establish numerous structural properties of the graphs $G$ with $h(G)=g(G)$, allowing for the constructive characterization as well as the efficient recognition of all such graphs that are triangle-free. Furthermore, we characterize---in terms of forbidden induced subgraphs---the graphs $G$ that satisfy $h(G')=g(G')$ for every induced subgraph $G'$ of $G$. [PUBLICATION ABSTRACT]
ISSN:0895-4801
1095-7146
DOI:10.1137/110859014