Theoretical investigations of the effect of vacancies on the geometric and electronic structures of zinc sulfide
The effects of S-vacancy and Zn-vacancy on the geometric and electronic structures of zinc blende ZnS are investigated by the first-principles calculation of the plane wave ultrasoft pseudopotential method based on the density functional theory. The results demonstrate that both S-vacancy and Zn-vac...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2012-09, Vol.407 (18), p.3888-3892 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effects of S-vacancy and Zn-vacancy on the geometric and electronic structures of zinc blende ZnS are investigated by the first-principles calculation of the plane wave ultrasoft pseudopotential method based on the density functional theory. The results demonstrate that both S-vacancy and Zn-vacancy decrease the cell volume and induce slight deformation of the perfect ZnS. Furthermore, this change of geometric structure caused by Zn-vacancy is more obvious than the one due to the S-vacancy. The formation energy of S-vacancy is higher than that of Zn-vacancy, indicating that Zn-vacancy is easier to form than S-vacancy in ZnS crystal. Electronic structure analysis shows that Zn-vacancy increases the band-gap of ZnS from 2.03eV to 2.15eV, while the S-vacancy has almost no effect on the band-gap of ZnS. Bond population analysis shows that Zn-vacancy increases covalence character of the Zn–S bonds around Zn-vacancy, while S-vacancy shows a relatively weak effect on the covalence character of Zn–S bonds. |
---|---|
ISSN: | 0921-4526 1873-2135 |
DOI: | 10.1016/j.physb.2012.06.016 |