Structure evolution of pure iron upon low-temperature deformation under high pressure
Structure evolution of iron (99.97% purity) deformed by shear under pressure at 80 K in a medium of liquid nitrogen has been investigated. It has been found that, along with dislocation slip, twinning and development of deformation microbands become operative mechanisms of low-temperature deformatio...
Gespeichert in:
Veröffentlicht in: | Physics of metals and metallography 2010-12, Vol.110 (6), p.564-573 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structure evolution of iron (99.97% purity) deformed by shear under pressure at 80 K in a medium of liquid nitrogen has been investigated. It has been found that, along with dislocation slip, twinning and development of deformation microbands become operative mechanisms of low-temperature deformation. This led to specific type of inhomogeneity of the structure in which, up to ultimately attained degrees of deformation, low-angle misorientations are retained and, unlike room-temperature deformation, no homogeneous submicrocrystalline (SMC) structure is formed. Twinning contributes to the refinement of structure elements that are more than 1 μm in size; the further refinement occurs by the dislocation-disclination mechanism and goes to the steady-state stage. |
---|---|
ISSN: | 0031-918X 1555-6190 |
DOI: | 10.1134/S0031918X10120070 |