Structure of a titanium-alloyed high-tin bronze obtained by the Osprey method
The titanium-alloyed bronzes with enhanced (14.5 and 15.5 wt %) tin content obtained by the Osprey method have been studied by the methods of optical, scanning, and transmission electron microscopy with the use of quantitative microanalysis in the initial state and after hot extrusion. These alloys...
Gespeichert in:
Veröffentlicht in: | Physics of metals and metallography 2010-08, Vol.110 (2), p.162-174 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The titanium-alloyed bronzes with enhanced (14.5 and 15.5 wt %) tin content obtained by the Osprey method have been studied by the methods of optical, scanning, and transmission electron microscopy with the use of quantitative microanalysis in the initial state and after hot extrusion. These alloys have been employed as bronze matrices of multifilamentary superconducting Nb/Cu-Sn composites. An increase in the tin content in the bronze matrix makes it possible to enhance the critical current density of the multifilamentary composite owing to the improvement of the structure and composition of a superconducting Nb
3
Sn compound that is formed upon diffusion annealing. It has been shown that the Osprey technology allows one to obtain bronzes with an enhanced Sn content and simultaneously to reduce the dendritic segregation characteristic of cast bronzes. The distribution of Sn and Ti in these alloys has been investigated. A more homogeneous structure in the initial state is characteristic of the alloy Cu-14.5Sn-0.24Ti (wt %). The increase in the tin content to 15.5 wt % leads to the formation of microregions of dendritic segregation with an (α + δ) eutectoid in the initial state, which slightly decreases plastic characteristics of this bronze. |
---|---|
ISSN: | 0031-918X 1555-6190 |
DOI: | 10.1134/S0031918X10080065 |