Time Scales for Gas-Particle Partitioning Equilibration of Secondary Organic Aerosol Formed from Alpha-Pinene Ozonolysis
Most chemical transport models assume instantaneous equilibrium to represent gas-particle partitioning of semivolatile organic aerosol. This approach has been challenged by recent studies suggesting that secondary organic aerosol (SOA) cannot reach equilibrium within atmospheric time scales. The eme...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2013-06, Vol.47 (11), p.5588-5594 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most chemical transport models assume instantaneous equilibrium to represent gas-particle partitioning of semivolatile organic aerosol. This approach has been challenged by recent studies suggesting that secondary organic aerosol (SOA) cannot reach equilibrium within atmospheric time scales. The emergent hypothesis is that gas-particle partitioning rates are limited by diffusion within the condensed phase, which is thought to be “glassy.” Here, we investigate the equilibration time scales of SOA formed from α-pinene ozonolysis by measuring the dynamic response to a modest step-change in temperature. Upon heating, equilibrium is disturbed, and the particles evaporate to restore equilibrium at the new temperature, which is attained when evaporation ceases. The SOA was formed at 10 °C and then heated to near room temperature (30 °C) so that the phase state (viscosity) of the condensed-phase after heating is similar to how it would be in the atmosphere. Experiments were performed in both a thermodenuder, with SOA loading of 350 μg/m3, and in a smog chamber, with SOA loading of 2–12 μg/m3. Both experiments show, contrary to previous findings, that the SOA achieves equilibrium with dynamic responses consistent with a mass accommodation coefficient of order 0.1. For typical atmospheric conditions, this translates into equilibration time scales on the order of minutes to tens of minutes, supporting the use of equilibrium partitioning in chemical transport models. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es400078d |