Changes in saccadic eye movement (SEM) and quantitative EEG parameter in bipolar patients
Abstract Background There is increasing evidence that neurocognitive dysfunction is associated with the different states in Bipolar Disorder. Gamma coherence is strongly related to cognitive processes and cortico-cortical communication. This paper aims at shedding light on the relationship between c...
Gespeichert in:
Veröffentlicht in: | Journal of affective disorders 2013-03, Vol.145 (3), p.378-385 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background There is increasing evidence that neurocognitive dysfunction is associated with the different states in Bipolar Disorder. Gamma coherence is strongly related to cognitive processes and cortico-cortical communication. This paper aims at shedding light on the relationship between cortical gamma coherence within bipolar patients and a control group during a prosaccadic attention task. We hypothesized that gamma coherence oscillations act as a main neural mechanism underlying information processing which changes in bipolar patients. Method Thirty-two (12 healthy controls and 20 bipolar patients) subjects were enrolled in this study. The subjects performed a prosaccadic attention task while their brain activity pattern was recorded using quantitative electroencephalography (20 channels). Results We observed that the maniac group presented lower saccade latency when compared to depression and control groups. The main finding was a greater gamma coherence for control group in the right hemisphere of both frontal and motor cortices caused by the execution of a prosaccadic attention task. Limitations The findings need to be confirmed in larger samples and in bipolar patients before start the pharmacological treatment. Conclusions Our findings suggest a disrupted connection of the brain's entire functioning of maniac patients and represent a deregulation in cortical inhibitory mechanism. Thus, our results reinforce our hypothesis that greater gamma coherence in the right and left frontal cortices for the maniac group produces a “noise” during information processing and highlights that gamma coherence might be a biomarker for cognitive dysfunction during the manic state. |
---|---|
ISSN: | 0165-0327 1573-2517 |
DOI: | 10.1016/j.jad.2012.04.049 |