Efficient Likelihood Evaluation of State-Space Representations

We develop a numerical procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-Gaussian state-space models. The procedure employs continuous approximations of filtering densities, and delivers unconditionally optimal global approximations of targeted i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of economic studies 2013-04, Vol.80 (2 (283)), p.538-567
Hauptverfasser: DeJONG, DAVID N., LIESENFELD, ROMAN, MOURA, GUILHERME V., RICHARD, JEAN-FRANÇOIS, DHARMARAJAN, HARIHARAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a numerical procedure that facilitates efficient likelihood evaluation in applications involving non-linear and non-Gaussian state-space models. The procedure employs continuous approximations of filtering densities, and delivers unconditionally optimal global approximations of targeted integrands to achieve likelihood approximation. Optimized approximations of targeted integrands are constructed via efficient importance sampling. Resulting likelihood approximations are continuous functions of model parameters, greatly enhancing parameter estimation. We illustrate our procedure in applications to dynamic stochastic general equilibrium models.
ISSN:0034-6527
1467-937X
DOI:10.1093/restud/rds040