The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165
Abstract Synergy in the downstream signaling pathways of the vascular endothelial growth factor receptor-2 (VEGFR-2) and the integrin αvβ3 is critical for blood vessel formation. Thus, agents that activate both receptors could possess efficient pro-angiogenic potential. Here, we created a fibrin-bin...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2013-08, Vol.34 (24), p.5958-5968 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Synergy in the downstream signaling pathways of the vascular endothelial growth factor receptor-2 (VEGFR-2) and the integrin αvβ3 is critical for blood vessel formation. Thus, agents that activate both receptors could possess efficient pro-angiogenic potential. Here, we created a fibrin-binding bi-functional protein (FNIII10-VEGF) consisting of the 10th type III domain of fibronectin (FNIII10) fused to a plasmin-resistant VEGF-A165 mutant (VEGF) that potentiated angiogenic processes when compared to the effect of the separate molecules. FNIII10-VEGF was able to bind both VEGFR-2 and integrin αvβ3. Intriguingly, cell attachment and spreading to immobilized FNIII10-VEGF was significantly enhanced compared to individual FNIII10 or VEGF proteins. Delivery of immobilized FNIII10-VEGF by covalent linkage to a fibrin matrix significantly enhanced the angiogenic response in an in vivo wound healing assay compared to soluble VEGF. Unexpectedly, the angiogenic response to fibrin-immobilized FNIII10-VEGF was reduced in comparison to the pro-angiogenic effect of fibrin-immobilized VEGF. Collectively, findings of this study corroborate a critical role for a subtle balance of the integrin-VEGF interplay in angiogenesis and provide insight in how engineered growth factors in concert with biomaterial matrices may offer a potent molecular/material approach to harness these interactions for therapeutic angiogenesis. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2013.04.050 |