The Thermal Voltage Fluctuations in the Planar Core-Coat Conductor of a Neuron-Semiconductor Interface

The extracellular electrical interfacing of nerve cells with metals or semiconductors is governed by the resistance of the cell-solid junction. With snail neurons on a CMOS chip, we have probed the thermal voltage fluctuations in the junction at a spatial resolution of 7.4 μm in a spectral range fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-05, Vol.29 (20), p.6084-6090
Hauptverfasser: Zeitler, Ralf, Fromherz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The extracellular electrical interfacing of nerve cells with metals or semiconductors is governed by the resistance of the cell-solid junction. With snail neurons on a CMOS chip, we have probed the thermal voltage fluctuations in the junction at a spatial resolution of 7.4 μm in a spectral range from 10 Hz to 1 MHz using an array of sensor transistors. The power spectral density (PSD) could be interpreted in terms of a Johnson–Nyquist noise if the distributed nature of the cell-solid junction and the size of the sensors were taken into account. The PSD over the whole spectral range as well as its spatial profile were matched by the thermal noise of a circular core-coat conductor with a homogeneous sheet resistance in the range of 100 MΩ. The quantitative interpretation of the thermal noise in a cell-solid junction provides a basis for applications of this noninvasive method in the characterization of biosensoric and neuroprosthetic devices.
ISSN:0743-7463
1520-5827
DOI:10.1021/la4002169