Modulational instability, wave breaking, and formation of large-scale dipoles in the atmosphere

We use direct numerical simulation of the Navier-Stokes equations for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between the ocean and atmosphere. If the steepness of the initial wave exceeds a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-05, Vol.110 (18), p.184504-184504, Article 184504
Hauptverfasser: Iafrati, A, Babanin, A, Onorato, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use direct numerical simulation of the Navier-Stokes equations for a two-phase flow (water and air) to study the dynamics of the modulational instability of free surface waves and its contribution to the interaction between the ocean and atmosphere. If the steepness of the initial wave exceeds a threshold value, we observe wave-breaking events and the formation of large-scale dipole structures in the air. Because of the multiple steepening and breaking of the waves under unstable wave packets, a train of dipoles is released in the atmosphere; those dipoles propagate at a height comparable with the wavelength. The amount of energy dissipated by the breaker in water and air is considered, and contrary to expectations, we observe that the energy dissipation in air is greater than that in water. The possible consequences on the wave modeling and on the exchange of aerosols and gases between air and water are discussed.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.110.184504