Effects of Resident Soil Fungi and Land Use History Outweigh Those of Commercial Mycorrhizal Inocula: Testing a Restoration Strategy in Unsterilized Soil

Arbuscular mycorrhizal fungi (AMF) have numerous effects on temperate grassland ecosystems, but prairie restorations are frequently located in sites with depauperate AMF communities. In this greenhouse study, four native species (Schizachyrium scoparium, Elymus canadensis, Monarda punctata, and Aste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Restoration ecology 2013-05, Vol.21 (3), p.380-389
Hauptverfasser: Paluch, Elisabeth C., Thomsen, Meredith A., Volk, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Arbuscular mycorrhizal fungi (AMF) have numerous effects on temperate grassland ecosystems, but prairie restorations are frequently located in sites with depauperate AMF communities. In this greenhouse study, four native species (Schizachyrium scoparium, Elymus canadensis, Monarda punctata, and Aster ericoides) and an invasive grass (Bromus inermis) were grown in unsterilized field soils and treated with two types of commercial AMF inoculum. Inocula were applied at one and two times the manufacturers' suggested rate. Soil was collected from a meadow enrolled in the Conservation Reserve Program (CRP), and from an active agricultural field. Inoculum addition had no effect on biomass or percent colonization by AMF for any grass species, regardless of soil type. Inoculum type significantly affected Aster biomass and percent colonization, although pairwise comparisons of treated individuals and controls were not significant. The overall lack of effectiveness of the commercial inocula may reflect the small number of propagules added, even when used at twice the recommended rate. Higher rates of fungal colonization in all three grasses and increased biomass in the native grasses were observed in individuals grown in the CRP soil. Plants were also colonized by dark septate endophytic fungi; for Schizachyrium, endophyte colonization was significantly greater in tilled than CRP soil. Our results indicate that an existing soil fungal community promotes colonization by AMF more than the addition of commercial inocula, and that soil characteristics associated with land use history significantly affect the growth of native species in a restoration setting.
ISSN:1061-2971
1526-100X
DOI:10.1111/j.1526-100X.2012.00894.x