Effects of Molecular Structure of Polyphenols on Their Noncovalent Interactions with Oat β‑glucan

Few data were available on the interactions between polyphenols and polysaccharides. The effects of the chemical structure of polyphenols on their interactions with oat β-glucan were analyzed. Ultrafiltration was applied to determine the adsorption capacities of polyphenols into oat β-glucan. Hydrox...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2013-05, Vol.61 (19), p.4533-4538
Hauptverfasser: Wang, Yuxue, Liu, Jia, Chen, Fang, Zhao, Guohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Few data were available on the interactions between polyphenols and polysaccharides. The effects of the chemical structure of polyphenols on their interactions with oat β-glucan were analyzed. Ultrafiltration was applied to determine the adsorption capacities of polyphenols into oat β-glucan. Hydroxylation favored the adsorption of flavonoids with three or fewer hydroxyl groups but deteriorated those with four or more hydroxyl groups. Among flavonoid isomers, the adsorption capacities increased in the order flavonol > flvaone > flavanone > isoflavone. Glycosylation exerted complicated influences on the adsorption capacities of flavonoids into oat β-glucan. In most cases, methylation and methoxylation of phenolic acids lowered their adsorption capacities into oat β-glucan. Esterification of gallic acid weakened its adsorption capacity into oat β-glucan, whereas o-coumaric acid presented higher adsorption capacity into oat β-glucan than p- and m-coumaric acids. Galloylation improved the adsorption capacities of catechins into oat β-glucan.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf400471u