Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure

Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dentistry 2013-05, Vol.41 (5), p.455-463
Hauptverfasser: Shortall, A, El-Mahy, W, Stewardson, D, Addison, O, Palin, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 463
container_issue 5
container_start_page 455
container_title Journal of dentistry
container_volume 41
creator Shortall, A
El-Mahy, W
Stewardson, D
Addison, O
Palin, W
description Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase® (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC® -Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture ( T ) of the composites. Samples were irradiated with the same monowave Bluephase® light for 10 s, 20 s or 40 s at distances of 0 mm or 7 mm. After 24 h, storage samples were fractured in a universal testing machine and torque to failure was derived. Results Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0 mm in a MARC® -Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly ( P < 0.05) with radiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8) N/mm and 13.7 (2.2) N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm2 radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Conclusions Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Clinical significance Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be achieved intra-orally.
doi_str_mv 10.1016/j.jdent.2013.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1350893190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030057121300047X</els_id><sourcerecordid>1350893190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-25e0b37baab899ea9ac4092bfdefcd0a8a8c427898ca00af66ba0cc225c3145d3</originalsourceid><addsrcrecordid>eNqFkkuLFTEQhYMoznX0FwjS4MZNt5VHP7JQkMHHwIALFWYXqtPVmrZv-pqk1Vn7x03PHRVm4ypQ-c5JpU4x9phDxYE3z6dqGsinSgCXFYgKQNxhO961uuRtc3mX7UAClHXLxQl7EOMEAAqEvs9OhFS84bresV_n3iWHczEGtGkNVASKLib0lgr0Q2HX4PznItH-QAGPhItULGOu-cIufrtaAoara6kve4yUdUuuRpcoFj9c-lI4bwNh3LwCDg59KuhnJrLhQ3ZvxDnSo5vzlH168_rj2bvy4v3b87NXF6VVSqRS1AS9bHvEvtOaUKNVoEU_DjTaAbDDzirRdrqzCIBj0_QI1gpRW8lVPchT9uzoewjLt5ViMnsXLc0zelrWaLisodOSa8jo01votKzB5-4ypbRQUjUqU_JI2bDEGGg0h-D2eRKGg9kyMpO5zshsGRkQJmeUVU9uvNd-T8NfzZ9QMvDiCFAexndHwUTrKAcyuEA2mWFx_3ng5S29nZ13FuevdEXx309MzALzYVuTbUu43DakvZS_AeBru_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349243464</pqid></control><display><type>article</type><title>Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Shortall, A ; El-Mahy, W ; Stewardson, D ; Addison, O ; Palin, W</creator><creatorcontrib>Shortall, A ; El-Mahy, W ; Stewardson, D ; Addison, O ; Palin, W</creatorcontrib><description>Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase® (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC® -Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture ( T ) of the composites. Samples were irradiated with the same monowave Bluephase® light for 10 s, 20 s or 40 s at distances of 0 mm or 7 mm. After 24 h, storage samples were fractured in a universal testing machine and torque to failure was derived. Results Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0 mm in a MARC® -Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly ( P &lt; 0.05) with radiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8) N/mm and 13.7 (2.2) N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm2 radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Conclusions Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Clinical significance Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be achieved intra-orally.</description><identifier>ISSN: 0300-5712</identifier><identifier>EISSN: 1879-176X</identifier><identifier>DOI: 10.1016/j.jdent.2013.02.002</identifier><identifier>PMID: 23416195</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Barium ; Composite ; Composite Resins - chemistry ; Composite Resins - radiation effects ; Curing ; Curing Lights, Dental - classification ; Dental Materials - chemistry ; Dental Materials - radiation effects ; Dental Stress Analysis - instrumentation ; Dentistry ; Exotherm ; Fracture ; Humans ; Light ; Light-Curing of Dental Adhesives - methods ; Materials Testing ; Methacrylates - chemistry ; Methacrylates - radiation effects ; Nanoparticles ; Radiant exposure ; Radiation Dosage ; Silicon Dioxide - chemistry ; Silicon Dioxide - radiation effects ; Stress concentration ; Stress, Mechanical ; Surface Properties ; Temperature ; Tensile Strength ; Time Factors ; Torque ; Zirconium - chemistry ; Zirconium - radiation effects</subject><ispartof>Journal of dentistry, 2013-05, Vol.41 (5), p.455-463</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-25e0b37baab899ea9ac4092bfdefcd0a8a8c427898ca00af66ba0cc225c3145d3</citedby><cites>FETCH-LOGICAL-c442t-25e0b37baab899ea9ac4092bfdefcd0a8a8c427898ca00af66ba0cc225c3145d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S030057121300047X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23416195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shortall, A</creatorcontrib><creatorcontrib>El-Mahy, W</creatorcontrib><creatorcontrib>Stewardson, D</creatorcontrib><creatorcontrib>Addison, O</creatorcontrib><creatorcontrib>Palin, W</creatorcontrib><title>Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure</title><title>Journal of dentistry</title><addtitle>J Dent</addtitle><description>Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase® (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC® -Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture ( T ) of the composites. Samples were irradiated with the same monowave Bluephase® light for 10 s, 20 s or 40 s at distances of 0 mm or 7 mm. After 24 h, storage samples were fractured in a universal testing machine and torque to failure was derived. Results Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0 mm in a MARC® -Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly ( P &lt; 0.05) with radiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8) N/mm and 13.7 (2.2) N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm2 radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Conclusions Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Clinical significance Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be achieved intra-orally.</description><subject>Barium</subject><subject>Composite</subject><subject>Composite Resins - chemistry</subject><subject>Composite Resins - radiation effects</subject><subject>Curing</subject><subject>Curing Lights, Dental - classification</subject><subject>Dental Materials - chemistry</subject><subject>Dental Materials - radiation effects</subject><subject>Dental Stress Analysis - instrumentation</subject><subject>Dentistry</subject><subject>Exotherm</subject><subject>Fracture</subject><subject>Humans</subject><subject>Light</subject><subject>Light-Curing of Dental Adhesives - methods</subject><subject>Materials Testing</subject><subject>Methacrylates - chemistry</subject><subject>Methacrylates - radiation effects</subject><subject>Nanoparticles</subject><subject>Radiant exposure</subject><subject>Radiation Dosage</subject><subject>Silicon Dioxide - chemistry</subject><subject>Silicon Dioxide - radiation effects</subject><subject>Stress concentration</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Tensile Strength</subject><subject>Time Factors</subject><subject>Torque</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - radiation effects</subject><issn>0300-5712</issn><issn>1879-176X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuLFTEQhYMoznX0FwjS4MZNt5VHP7JQkMHHwIALFWYXqtPVmrZv-pqk1Vn7x03PHRVm4ypQ-c5JpU4x9phDxYE3z6dqGsinSgCXFYgKQNxhO961uuRtc3mX7UAClHXLxQl7EOMEAAqEvs9OhFS84bresV_n3iWHczEGtGkNVASKLib0lgr0Q2HX4PznItH-QAGPhItULGOu-cIufrtaAoara6kve4yUdUuuRpcoFj9c-lI4bwNh3LwCDg59KuhnJrLhQ3ZvxDnSo5vzlH168_rj2bvy4v3b87NXF6VVSqRS1AS9bHvEvtOaUKNVoEU_DjTaAbDDzirRdrqzCIBj0_QI1gpRW8lVPchT9uzoewjLt5ViMnsXLc0zelrWaLisodOSa8jo01votKzB5-4ypbRQUjUqU_JI2bDEGGg0h-D2eRKGg9kyMpO5zshsGRkQJmeUVU9uvNd-T8NfzZ9QMvDiCFAexndHwUTrKAcyuEA2mWFx_3ng5S29nZ13FuevdEXx309MzALzYVuTbUu43DakvZS_AeBru_o</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Shortall, A</creator><creator>El-Mahy, W</creator><creator>Stewardson, D</creator><creator>Addison, O</creator><creator>Palin, W</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130501</creationdate><title>Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure</title><author>Shortall, A ; El-Mahy, W ; Stewardson, D ; Addison, O ; Palin, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-25e0b37baab899ea9ac4092bfdefcd0a8a8c427898ca00af66ba0cc225c3145d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Barium</topic><topic>Composite</topic><topic>Composite Resins - chemistry</topic><topic>Composite Resins - radiation effects</topic><topic>Curing</topic><topic>Curing Lights, Dental - classification</topic><topic>Dental Materials - chemistry</topic><topic>Dental Materials - radiation effects</topic><topic>Dental Stress Analysis - instrumentation</topic><topic>Dentistry</topic><topic>Exotherm</topic><topic>Fracture</topic><topic>Humans</topic><topic>Light</topic><topic>Light-Curing of Dental Adhesives - methods</topic><topic>Materials Testing</topic><topic>Methacrylates - chemistry</topic><topic>Methacrylates - radiation effects</topic><topic>Nanoparticles</topic><topic>Radiant exposure</topic><topic>Radiation Dosage</topic><topic>Silicon Dioxide - chemistry</topic><topic>Silicon Dioxide - radiation effects</topic><topic>Stress concentration</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Tensile Strength</topic><topic>Time Factors</topic><topic>Torque</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shortall, A</creatorcontrib><creatorcontrib>El-Mahy, W</creatorcontrib><creatorcontrib>Stewardson, D</creatorcontrib><creatorcontrib>Addison, O</creatorcontrib><creatorcontrib>Palin, W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of dentistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shortall, A</au><au>El-Mahy, W</au><au>Stewardson, D</au><au>Addison, O</au><au>Palin, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure</atitle><jtitle>Journal of dentistry</jtitle><addtitle>J Dent</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>41</volume><issue>5</issue><spage>455</spage><epage>463</epage><pages>455-463</pages><issn>0300-5712</issn><eissn>1879-176X</eissn><abstract>Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase® (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC® -Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture ( T ) of the composites. Samples were irradiated with the same monowave Bluephase® light for 10 s, 20 s or 40 s at distances of 0 mm or 7 mm. After 24 h, storage samples were fractured in a universal testing machine and torque to failure was derived. Results Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0 mm in a MARC® -Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly ( P &lt; 0.05) with radiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8) N/mm and 13.7 (2.2) N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm2 radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Conclusions Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Clinical significance Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be achieved intra-orally.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23416195</pmid><doi>10.1016/j.jdent.2013.02.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-5712
ispartof Journal of dentistry, 2013-05, Vol.41 (5), p.455-463
issn 0300-5712
1879-176X
language eng
recordid cdi_proquest_miscellaneous_1350893190
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Barium
Composite
Composite Resins - chemistry
Composite Resins - radiation effects
Curing
Curing Lights, Dental - classification
Dental Materials - chemistry
Dental Materials - radiation effects
Dental Stress Analysis - instrumentation
Dentistry
Exotherm
Fracture
Humans
Light
Light-Curing of Dental Adhesives - methods
Materials Testing
Methacrylates - chemistry
Methacrylates - radiation effects
Nanoparticles
Radiant exposure
Radiation Dosage
Silicon Dioxide - chemistry
Silicon Dioxide - radiation effects
Stress concentration
Stress, Mechanical
Surface Properties
Temperature
Tensile Strength
Time Factors
Torque
Zirconium - chemistry
Zirconium - radiation effects
title Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20fracture%20resistance%20and%20curing%20temperature%20rise%20of%20ten%20contemporary%20resin-based%20composites%20with%20increasing%20radiant%20exposure&rft.jtitle=Journal%20of%20dentistry&rft.au=Shortall,%20A&rft.date=2013-05-01&rft.volume=41&rft.issue=5&rft.spage=455&rft.epage=463&rft.pages=455-463&rft.issn=0300-5712&rft.eissn=1879-176X&rft_id=info:doi/10.1016/j.jdent.2013.02.002&rft_dat=%3Cproquest_cross%3E1350893190%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349243464&rft_id=info:pmid/23416195&rft_els_id=S030057121300047X&rfr_iscdi=true