Initial fracture resistance and curing temperature rise of ten contemporary resin-based composites with increasing radiant exposure
Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant e...
Gespeichert in:
Veröffentlicht in: | Journal of dentistry 2013-05, Vol.41 (5), p.455-463 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Objectives The principal objective of this study was to determine whether the bulk fracture resistance of ten light activated composites varied over a clinically realistic range of radiant exposures between 5 and 40 J/cm2. Methods Ten operators were tested for clinically simulated radiant exposure delivery from a Bluephase® (Ivoclar Vivadent, Schaan, Liechtenstein) LED light to an occlusal cavity floor in tooth 27 in a mannequin head using a MARC® -Patient Simulator (Bluelight Analytics Inc., Halifax, NS) device. Notch disc test samples were prepared to determine the torque resistance to fracture ( T ) of the composites. Samples were irradiated with the same monowave Bluephase® light for 10 s, 20 s or 40 s at distances of 0 mm or 7 mm. After 24 h, storage samples were fractured in a universal testing machine and torque to failure was derived. Results Radiant exposure delivered in the clinical simulation ranged from 14.3% to 69.4% of maximum mean radiant exposure deliverable at 0 mm in a MARC® -Resin Calibrator (Bluelight Analytics Inc., Halifax, NS) test device. Mean torque to failure increased significantly ( P < 0.05) with radiant exposure for 8 out of 10 products. The micro-fine hybrid composite Gradia Direct anterior (GC) had the lowest mean (S.D.) T between 10.3 (1.8) N/mm and 13.7 (2.2) N/mm over the tested radiant exposure range. Three heavily filled materials Majesty Posterior, Clearfil APX and Clearfil Photo-Posterior (Kuraray) had mean T values in excess of 25 N/mm following 40 J/cm2 radiant exposure. Mean T for Z100 (3MESPE) and Esthet-X (Dentsply) increased by 10% and 91% respectively over the tested range of radiant exposures. Conclusions Individual products require different levels of radiant exposure to optimize their fracture resistance. Light activated composites vary in the rate at which they attain optimal fracture resistance. Clinical significance Unless the clinician accurately controls all the variables associated with energy delivery, there is no way of predicting that acceptable fracture resistance will be achieved intra-orally. |
---|---|
ISSN: | 0300-5712 1879-176X |
DOI: | 10.1016/j.jdent.2013.02.002 |