Fredholm Index and Spectral Flow in Non-self-adjoint Case

A version of the "Fredholm index = spectral flow" theorem is proved for general families of elliptic operators (A(t)}t∈R on closed (compact and without boundary) manifolds. Here we do not require that A(t), t ∈R or its leading part is self-adjoint.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2013-05, Vol.29 (5), p.975-992
1. Verfasser: Chen, Guoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A version of the "Fredholm index = spectral flow" theorem is proved for general families of elliptic operators (A(t)}t∈R on closed (compact and without boundary) manifolds. Here we do not require that A(t), t ∈R or its leading part is self-adjoint.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-013-1045-3