The energy functional on the Virasoro-Bott group with the L super(2)-metric has no local minima
The geodesic equation for the right invariant L super(2)-metric (which is a weak Riemannian metric) on each Virasoro-Bott group is equivalent to the KdV-equation. We prove that the corresponding energy functional, when restricted to paths with fixed endpoints, has no local minima. In particular, sol...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2013-04, Vol.43 (4), p.385-395 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The geodesic equation for the right invariant L super(2)-metric (which is a weak Riemannian metric) on each Virasoro-Bott group is equivalent to the KdV-equation. We prove that the corresponding energy functional, when restricted to paths with fixed endpoints, has no local minima. In particular, solutions of KdV do not define locally length-minimizing paths. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-012-9350-0 |