A Structured-Population Genetic-Algorithm based on Hierarchical Hypercube of Genes Expressions
Structured-population Genetic Algorithm (GA) usually leads to more superior performance than the panmictic genetic algorithm; since it can control two opposite processes, namely exploration and exploitation in the search space. Several spatially structured-population GAs have been introduced in the...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2013-01, Vol.64 (22), p.5-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Structured-population Genetic Algorithm (GA) usually leads to more superior performance than the panmictic genetic algorithm; since it can control two opposite processes, namely exploration and exploitation in the search space. Several spatially structured-population GAs have been introduced in the literature such as cellular, patchwork, island-model, terrain-based A, graph-based, religion-based and social-based GA. All the aforementioned works did not construct the sub-populations based on the genes information of the individuals themselves. The structuring of sub-populations based on this information might help in attaining better performance and more efficient search strategy. In this paper, the structured population is represented as hierarchical hypercube of sub-populations that are dynamically constructed and adapted at search time. Each sub-population represents a sub-division of the real genes space. This structure could help in directing the search towards the promising sub-spaces. Finally, a comparative study with other known structured population GA is provided. |
---|---|
ISSN: | 0975-8887 0975-8887 |
DOI: | 10.5120/10775-4446 |