An Improved Trigonometric Differential Evolution
Differential evolution is an efficient and powerful population-based stochastic technique capable of handling non-differentiable, non-linear and multi-modal objective functions. In order to improve its performance, this paper introduces a best-trigonometric mutation strategy and applies a crossover...
Gespeichert in:
Veröffentlicht in: | International journal of advancements in computing technology 2011-12, Vol.3 (11), p.156-162 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Differential evolution is an efficient and powerful population-based stochastic technique capable of handling non-differentiable, non-linear and multi-modal objective functions. In order to improve its performance, this paper introduces a best-trigonometric mutation strategy and applies a crossover rate update strategy to the proposed algorithm. The performance of the proposed algorithm is investigated on a set of benchmark functions. The numerical experimental results show that the convergence rate of proposed algorithm is higher and the robustness of proposed algorithm is better than DE and TDE algorithm. |
---|---|
ISSN: | 2005-8039 2233-9337 |
DOI: | 10.4156/ijact.vol3.issue11.20 |