On the maximum damping performance of piezoelectric switching techniques

Synchronized switch damping on inductor offers a high damping performance in a broad frequency range. It consists of an inductor and resistor in a serial configuration, which are connected and disconnected from the piezoceramics in an alternating manner by a switch. When the switch is triggered by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent material systems and structures 2013-04, Vol.24 (6), p.717-728
Hauptverfasser: Neubauer, Marcus, Han, Xu, Wallaschek, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synchronized switch damping on inductor offers a high damping performance in a broad frequency range. It consists of an inductor and resistor in a serial configuration, which are connected and disconnected from the piezoceramics in an alternating manner by a switch. When the switch is triggered by the vibration itself, it adapts to different excitation frequencies especially in the low frequency range. This article presents a detailed study of the damping performance of the synchronized switch damping on inductor technique. Calculations are performed in a normalized way. The optimal tuning of synchronized switch damping on inductor network parameters is derived, and the corresponding maximum damping performance is obtained. The results are further compared to standard linear inductance–resistance networks. For a validation of the theoretical results, measurements on a clamped beam test rig are performed. Therefore, the synchronized switch damping on inductor circuit is realized as a synthetic impedance in a DSpace environment. The measurement results are in good agreement with the theoretical calculations.
ISSN:1045-389X
1530-8138
DOI:10.1177/1045389X12445645