A predictive modelling tool for assessing climate, land use and hydrological change on reservoir physicochemical and biological properties

Reservoirs are fundamental for water and energy supply but vulnerable to impacts including climate change. This paper outlines the steps in the development of a model to predict how climate, land use and hydrological change could affect the physiochemical and ecological quality of reservoirs in Port...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Area (London 1969) 2012-12, Vol.44 (4), p.432-442
Hauptverfasser: Hughes, Samantha Jane, Cabecinha, Edna, Andrade dos Santos, João Carlos, Mendes Andrade, Cristina Maria, Mendes Lopes, Domingos Manuel, da Fonseca Trindade, Henrique Manuel, dos Santos Cabral, João Alexandre Ferreira Abel, dos Santos, Mário Gabriel Santiago, Lourenço, José Manuel Martinho, Marques Aranha, José Tadeu, Sanches Fernandes, Luís Filipe, Morais, Maria Manuela, Mendonça Leite, Maria Solange, de Oliveira, Paula Cristina Ribeiro Coutinho, Vitor Cortes, Rui Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reservoirs are fundamental for water and energy supply but vulnerable to impacts including climate change. This paper outlines the steps in the development of a model to predict how climate, land use and hydrological change could affect the physiochemical and ecological quality of reservoirs in Portugal's Douro region. Climatic data will be downscaled for subsequent finer spatial scale models to develop scenarios and outputs. Field observations and satellite imagery analysis will create dynamic maps providing data on change in land use and vegetation cover, while Artificial Neural Networks will determine how climate, land use and vegetation cover change may influence catchment hydrology. Data from field surveys of biological indicators, greenhouse gas emissions plus additional research will be applied in the Stochastic Dynamic Methodology, a sequential modelling process based on statistical parameter estimation, developed to predict and model physiochemical and ecological changes in reservoirs. This interdisciplinary approach will provide vital modelling tools for end users essential for water resource management in Portugal and to comply with the EU Water Framework Directive.
ISSN:0004-0894
1475-4762
DOI:10.1111/j.1475-4762.2012.01114.x