The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1
DNA repair has long been considered impossible in human spermatozoa due to the high level of DNA compaction observed in these cells. However, detailed examination of the base excision repair pathway in human spermatozoa has revealed the presence of an enzyme critical to this pathway, 8-oxoguanine DN...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2013-03, Vol.126 (Pt 6), p.1488-1497 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DNA repair has long been considered impossible in human spermatozoa due to the high level of DNA compaction observed in these cells. However, detailed examination of the base excision repair pathway in human spermatozoa has revealed the presence of an enzyme critical to this pathway, 8-oxoguanine DNA glycosylase 1 (OGG1). This glycosylase was associated with the sperm nucleus and mitochondria and could actively excise 8-hydroxy-2'-deoxyguanosine (8OHdG), releasing this adduct into the extracellular space. This activity was significantly reduced in the presence of cadmium (II), a recognized inhibitor of OGG1, in a time- and dose-dependent manner (P |
---|---|
ISSN: | 1477-9137 |
DOI: | 10.1242/jcs.121657 |