Intestinal Bile Secretion Promotes Drug Absorption from Lipid Colloidal Phases via Induction of Supersaturation

The oral bioavailability of poorly water-soluble drugs (PWSD) is often significantly enhanced by coadministration with lipids in food or lipid-based oral formulations. Coadministration with lipids promotes drug solubilization in intestinal mixed micelles and vesicles, however, the mechanism(s) by wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2013-05, Vol.10 (5), p.1874-1889
Hauptverfasser: Yeap, Yan Yan, Trevaskis, Natalie L, Quach, Tim, Tso, Patrick, Charman, William N, Porter, Christopher J. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The oral bioavailability of poorly water-soluble drugs (PWSD) is often significantly enhanced by coadministration with lipids in food or lipid-based oral formulations. Coadministration with lipids promotes drug solubilization in intestinal mixed micelles and vesicles, however, the mechanism(s) by which PWSD are absorbed from these dispersed phases remain poorly understood. Classically, drug absorption is believed to be a product of the drug concentration in free solution and the apparent permeability across the absorptive membrane. Solubilization in colloidal phases such as mixed micelles increases dissolution rate and total solubilized drug concentrations, but does not directly enhance (and may reduce) the free drug concentration. In the absence of changes to cellular permeability (which is often high for lipophilic, PWSD), significant changes to membrane flux are therefore unexpected. Realizing that increases in effective dissolution rate may be a significant driver of increases in drug absorption for PWSD, we explore here two alternate mechanisms by which membrane flux might also be enhanced: (1) collisional drug absorption where drug is directly transferred from lipid colloidal phases to the absorptive membrane, and (2) supersaturation-enhanced drug absorption where bile mediated dilution of lipid colloidal phases leads to a transient increase in supersaturation, thermodynamic activity and absorption. In the current study, collisional uptake mechanisms did not play a significant role in the absorption of a model PWSD, cinnarizine, from lipid colloidal phases. In contrast, bile-mediated dilution of model intestinal mixed micelles and vesicles led to drug supersaturation. For colloids that were principally micellar, supersaturation was maintained for a period sufficient to promote absorption. In contrast, for primarily vesicular systems, supersaturation resulted in rapid drug precipitation and no increase in drug absorption. This work suggests that ongoing dilution by bile in the gastrointestinal tract may invoke supersaturation in intestinal colloids and promote absorption, and thus presents a new mechanism by which lipids may enhance the oral absorption of PWSD.
ISSN:1543-8384
1543-8392
DOI:10.1021/mp3006566