Monte Carlo sensitivity analysis of an Eulerian large-scale air pollution model
Variance-based approaches for global sensitivity analysis have been applied and analyzed to study the sensitivity of air pollutant concentrations according to variations of rates of chemical reactions. The Unified Danish Eulerian Model has been used as a mathematical model simulating a remote transp...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2012-11, Vol.107, p.23-28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variance-based approaches for global sensitivity analysis have been applied and analyzed to study the sensitivity of air pollutant concentrations according to variations of rates of chemical reactions. The Unified Danish Eulerian Model has been used as a mathematical model simulating a remote transport of air pollutants. Various Monte Carlo algorithms for numerical integration have been applied to compute Sobol's global sensitivity indices. A newly developed Monte Carlo algorithm based on Sobol's quasi-random points MCA-MSS has been applied for numerical integration. It has been compared with some existing approaches, namely Sobol's ΛΠτ sequences, an adaptive Monte Carlo algorithm, the plain Monte Carlo algorithm, as well as, eFAST and Sobol's sensitivity approaches both implemented in SIMLAB software. The analysis and numerical results show advantages of MCA-MSS for relatively small sensitivity indices in terms of accuracy and efficiency. Practical guidelines on the estimation of Sobol's global sensitivity indices in the presence of computational difficulties have been provided.
► Variance-based global sensitivity analysis is performed for the air pollution model UNI-DEM. ► The main effect of input parameters dominates over higher-order interactions. ► Ozone concentrations are influenced mostly by variability of three chemical reactions rates. ► The newly developed MCA-MSS for multidimensional integration is compared with other approaches. ► More precise approaches like MCA-MSS should be applied when the needed accuracy has not been achieved. |
---|---|
ISSN: | 0951-8320 1879-0836 |
DOI: | 10.1016/j.ress.2011.06.007 |