Semiorders with separability properties
We analyze different separability conditions that characterize the numerical representability of semiorders through a real-valued function and a strictly positive threshold. Any necessary and sufficient condition for the numerical representability of an interval order by means of two real-valued fun...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical psychology 2012-12, Vol.56 (6), p.444-451 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We analyze different separability conditions that characterize the numerical representability of semiorders through a real-valued function and a strictly positive threshold. Any necessary and sufficient condition for the numerical representability of an interval order by means of two real-valued functions is proved to also characterize the Scott–Suppes representability of semiorders provided that a key additional condition of regularity with respect to sequences holds.
► The Scott–Suppes representability of semiorders is revisited. ► A wide variety of conditions are proved to characterize the representability. ► A key conjecture has been solved. ► Interval order separability equals Scott–Suppes semiorder separability. |
---|---|
ISSN: | 0022-2496 1096-0880 |
DOI: | 10.1016/j.jmp.2013.01.003 |