Semiorders with separability properties

We analyze different separability conditions that characterize the numerical representability of semiorders through a real-valued function and a strictly positive threshold. Any necessary and sufficient condition for the numerical representability of an interval order by means of two real-valued fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical psychology 2012-12, Vol.56 (6), p.444-451
Hauptverfasser: Candeal, Juan Carlos, Estevan, Asier, Gutiérrez García, Javier, Induráin, Esteban
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyze different separability conditions that characterize the numerical representability of semiorders through a real-valued function and a strictly positive threshold. Any necessary and sufficient condition for the numerical representability of an interval order by means of two real-valued functions is proved to also characterize the Scott–Suppes representability of semiorders provided that a key additional condition of regularity with respect to sequences holds. ► The Scott–Suppes representability of semiorders is revisited. ► A wide variety of conditions are proved to characterize the representability. ► A key conjecture has been solved. ► Interval order separability equals Scott–Suppes semiorder separability.
ISSN:0022-2496
1096-0880
DOI:10.1016/j.jmp.2013.01.003