Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements
Owing to its long building history, different types of building stones comprised the construction of the Cologne Cathedral. Severe damage is observed on the different stones, e.g., sandstones, carbonate, and volcanic rocks, especially when the different stone materials neighbor the medieval “Drachen...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2011-08, Vol.63 (7-8), p.1799-1822 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to its long building history, different types of building stones comprised the construction of the Cologne Cathedral. Severe damage is observed on the different stones, e.g., sandstones, carbonate, and volcanic rocks, especially when the different stone materials neighbor the medieval “Drachenfels trachyte” from the “Siebengebirge”. The question arises, “Is the insufficient compatibility of the implemented building materials causatively related to the strong decay of the Drachenfels trachyte?” The present investigations focus on the petrography and mineralogical composition of eight different stones from the Cologne Cathedral. Petrophysical data, i.e., phase content, moisture and thermal characteristics as well as strength properties are determined and discussed in correlation to each other, showing that not only in terms of lithology great differences exist, but also the petrophysical properties strongly diverge. The ascertained parameters are discussed in view of the deterioration behavior and decay mechanisms of the different stones. To evaluate the compatibility of original, replacement and modern building materials, the properties of the investigated stones are compared to those of Drachenfels trachyte by means of constraints given in the literature. Besides optical properties, petrophysical criteria are also defined as well as strength values. It could be shown that primarily moisture properties, i.e., capillary and sorptive water uptake, water saturation, drying processes and moisture dilatation can be addressed to the deterioration processes. |
---|---|
ISSN: | 1866-6280 1866-6299 |
DOI: | 10.1007/s12665-011-1077-x |