Fabrication of Highly Rough Ag Nanobud Substrates and Surface-Enhanced Raman Scattering of λ-DNA Molecules

Raman scattering signals can be enhanced by several orders of magnitude on surface-enhanced Raman scattering (SERS) substrates made from noble metal nanostructures. Some SERS substrates are even able to detect single-molecule Raman signals. A novel silver nanobud (AgNB) substrate with superior SERS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2012-01, Vol.2012 (2012), p.1-5
Hauptverfasser: Deng, Chuyun, Sun, Jia-Lin, Ma, Wanyun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Raman scattering signals can be enhanced by several orders of magnitude on surface-enhanced Raman scattering (SERS) substrates made from noble metal nanostructures. Some SERS substrates are even able to detect single-molecule Raman signals. A novel silver nanobud (AgNB) substrate with superior SERS activity was fabricated with a solid-state ionics method. The AgNB substrate was formed by tightly collocated unidirectional 100 nm size silver buds, presenting a highly rough surface topography. Distinct SERS signals of single λ-DNA molecules in water were detected on AgNB substrates. AgNB substrates were compared with disordered silver nanowire (AgNW) substrates manufactured by the same method through the SERS detection of λ-DNA solutions. This original AgNB substrate provides a reliable approach towards trace analysis of biomacromolecules and promotes the utilization of the SERS technique in biomedical research.
ISSN:1687-4110
1687-4129
DOI:10.1155/2012/820739