Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4(-)via adjusting the ring size and rigidity
In this paper, a series of novel acridine derived bisbenzimidazolium macrocyclic fluorescent sensors were designed and synthesized. X-ray crystal structures demonstrated the self-assembly behavior of these cyclophanes in the solid state driven by hydrogen bond and π-π interactions. Anion binding stu...
Gespeichert in:
Veröffentlicht in: | Organic & biomolecular chemistry 2013-01, Vol.11 (20), p.3375-3381 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a series of novel acridine derived bisbenzimidazolium macrocyclic fluorescent sensors were designed and synthesized. X-ray crystal structures demonstrated the self-assembly behavior of these cyclophanes in the solid state driven by hydrogen bond and π-π interactions. Anion binding studies of these sensors revealed a significant effect of the macrocyclic size and rigidity for H2PO4(-) sensing via the obvious turn-on as well as bathochromic-shift in fluorescence emission. Different cavity size or rigidity of the sensors showed different bathochromic-shifts (from 36 to 126 nm) in fluorescence emission induced by H2PO4(-), which resulted in significant color changes of fluorescence from blue to orange red, orange, green and blue-green respectively. The unique fluorescence response toward H2PO4(-) may be attributed to H2PO4(-)-induced assembly of sensors forming the excimer between two acridine rings to a different extent. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c3ob27500k |