Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4(-)via adjusting the ring size and rigidity

In this paper, a series of novel acridine derived bisbenzimidazolium macrocyclic fluorescent sensors were designed and synthesized. X-ray crystal structures demonstrated the self-assembly behavior of these cyclophanes in the solid state driven by hydrogen bond and π-π interactions. Anion binding stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic & biomolecular chemistry 2013-01, Vol.11 (20), p.3375-3381
Hauptverfasser: Zhang, Dawei, Jiang, Xiaozhi, Yang, Haiqiang, Martinez, Alexandre, Feng, Meiyuan, Dong, Zhiyun, Gao, Guohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a series of novel acridine derived bisbenzimidazolium macrocyclic fluorescent sensors were designed and synthesized. X-ray crystal structures demonstrated the self-assembly behavior of these cyclophanes in the solid state driven by hydrogen bond and π-π interactions. Anion binding studies of these sensors revealed a significant effect of the macrocyclic size and rigidity for H2PO4(-) sensing via the obvious turn-on as well as bathochromic-shift in fluorescence emission. Different cavity size or rigidity of the sensors showed different bathochromic-shifts (from 36 to 126 nm) in fluorescence emission induced by H2PO4(-), which resulted in significant color changes of fluorescence from blue to orange red, orange, green and blue-green respectively. The unique fluorescence response toward H2PO4(-) may be attributed to H2PO4(-)-induced assembly of sensors forming the excimer between two acridine rings to a different extent.
ISSN:1477-0520
1477-0539
DOI:10.1039/c3ob27500k