Differential Changes of Left Ventricular Myocardial Deformation in Diabetic Patients with Controlled and Uncontrolled Blood Glucose: A Three-Dimensional Speckle-Tracking Echocardiography–Based Study

Background Preclinical left ventricular (LV) systolic dysfunction has been documented in patients with diabetes mellitus (DM) with preserved LV ejection fractions (LVEFs). The aims of this study were to investigate whether there is any difference in myocardial deformation between patients with DM wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society of Echocardiography 2013-05, Vol.26 (5), p.499-506
Hauptverfasser: Zhang, Xiaoling, MD, Wei, Xin, MD, Liang, Yujia, MD, PhD, Liu, Min, MD, Li, Chunmei, MD, Tang, Hong, MD
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Preclinical left ventricular (LV) systolic dysfunction has been documented in patients with diabetes mellitus (DM) with preserved LV ejection fractions (LVEFs). The aims of this study were to investigate whether there is any difference in myocardial deformation between patients with DM with controlled (defined as glycosylated hemoglobin [HbA1c ] < 7%) and uncontrolled (HbA1c ≥ 7%) blood glucose using three-dimensional speckle-tracking echocardiography and to explore whether the level of HbA1c is associated with preclinical LV systolic dysfunction. Methods Thirty-one patients with DM with controlled blood glucose, 37 patients with DM with uncontrolled blood glucose, and 63 matched controls were studied. All subjects had normal LVEFs (≥55%). Global longitudinal strain (GLS), global circumferential strain, global area strain, and global radial strain were assessed using three-dimensional speckle-tracking echocardiography. Results Despite similar LVEFs, patients with uncontrolled DM had decreased peak systolic strain in all directions compared with the other two groups, as evidenced by GLS, global circumferential strain, global area strain, and global radial strain (all P values
ISSN:0894-7317
1097-6795
DOI:10.1016/j.echo.2013.02.016