In silico analysis of diverse endophytic fungi by using ITS1-5,8S-ITS2 sequences with isolates from various plant families in Brazil

Brazil has a great diversity of plants, and considering that all plant species studied to date have endophytic microorganisms (bacteria or fungi), the country is a resource in the search for bioactive compounds. Endophytes live within plants without causing damage and may be in dynamic equilibrium w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics and molecular research 2013-04, Vol.12 (2), p.935-950
Hauptverfasser: Rhoden, S A, Garcia, A, Azevedo, J L, Pamphile, J A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Brazil has a great diversity of plants, and considering that all plant species studied to date have endophytic microorganisms (bacteria or fungi), the country is a resource in the search for bioactive compounds. Endophytes live within plants without causing damage and may be in dynamic equilibrium with the health of the plant. Endophytic fungi can be identified by sequencing the region corresponding to internal transcribed spacer 1-5,8S-internal transcribed spacer 2 ribosomal DNA, and carrying out phylogenetic analyses of these sequences helps to identify species. The objective of this research was to perform in silico phylogenetic analysis of fungi isolated from various plant families in Brazil. For this study, we chose 12 articles published between 2005 and 2012 that examined endophytes isolated in Brazil. We analyzed sequences deposited in the National Center for Biotechnology Information GenBank database and carried out alignment to determine the genetic distance of strains using the Molecular Evolutionary Genetics Analysis version 5 program. The articles yielded 73 plant species belonging to 13 families found in the Brazilian States of Amazonas, Bahia, Minas Gerais, Paraná, and São Paulo. The use of GenBank and the Molecular Evolutionary Genetics Analysis program for phylogenetic observation revealed that several endophytes had been incorrectly identified because inconsistencies were apparent in their location in the phylogenetic tree. However, approximately 98% of the sequences deposited in GenBank were consistent with the identification of related genera, indicating that the database is sufficiently robust to support future studies, in which molecular identification of endophytes is made via analysis of ribosomal DNA sequences.
ISSN:1676-5680
1676-5680
DOI:10.4238/2013.April.2.10