Catalytic control over supramolecular gel formation

Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2013-05, Vol.5 (5), p.433-437
Hauptverfasser: Boekhoven, Job, Poolman, Jos M., Maity, Chandan, Li, Feng, van der Mee, Lars, Minkenberg, Christophe B., Mendes, Eduardo, van Esch, Jan H., Eelkema, Rienk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 5
container_start_page 433
container_title Nature chemistry
container_volume 5
creator Boekhoven, Job
Poolman, Jos M.
Maity, Chandan
Li, Feng
van der Mee, Lars
Minkenberg, Christophe B.
Mendes, Eduardo
van Esch, Jan H.
Eelkema, Rienk
description Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition. In situ catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.
doi_str_mv 10.1038/nchem.1617
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1345515169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1345515169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgipvTG3-AFLwRpTOnadLmUoZfMPBGr0Oans6OtJlJK-zf27k5RK9yIA_vObyEnAOdAmX5bWvesZmCgOyAjCHjPE5ZKg_3M6MjchLCklLBGYhjMkqYoJJKMSZspjtt111tIuPazjsbuU_0UehXXjfOoumt9tECbVQ53-iudu0pOaq0DXi2eyfk7eH-dfYUz18en2d389iwPO9ipJAZxsus0iUVScoBS9RapmhQCEkNB1pyzEqWG14YkWHBE8HSiiaaoizYhFxtc1feffQYOtXUwaC1ukXXBwUs5Rw4CDnQyz906XrfDtdtlBAMmEwGdb1VxrsQPFZq5etG-7UCqjZVqu8q1abKAV_sIvuiwXJPf7obwM0WhOGrXaD_tfN_3BeGu319</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346631392</pqid></control><display><type>article</type><title>Catalytic control over supramolecular gel formation</title><source>SpringerLink Journals</source><source>Nature</source><creator>Boekhoven, Job ; Poolman, Jos M. ; Maity, Chandan ; Li, Feng ; van der Mee, Lars ; Minkenberg, Christophe B. ; Mendes, Eduardo ; van Esch, Jan H. ; Eelkema, Rienk</creator><creatorcontrib>Boekhoven, Job ; Poolman, Jos M. ; Maity, Chandan ; Li, Feng ; van der Mee, Lars ; Minkenberg, Christophe B. ; Mendes, Eduardo ; van Esch, Jan H. ; Eelkema, Rienk</creatorcontrib><description>Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition. In situ catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1617</identifier><identifier>PMID: 23609096</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/923/1027 ; 639/638/541 ; 639/638/77 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemical bonds ; Chemistry ; Chemistry/Food Science ; Enzymes ; Equilibrium ; Gels ; Health care ; Hydrogels ; Inorganic Chemistry ; Mechanical properties ; Molecular weight ; Morphology ; Organic Chemistry ; Peptides ; Petrochemicals ; Petrochemicals industry ; Physical Chemistry</subject><ispartof>Nature chemistry, 2013-05, Vol.5 (5), p.433-437</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</citedby><cites>FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.1617$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.1617$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23609096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boekhoven, Job</creatorcontrib><creatorcontrib>Poolman, Jos M.</creatorcontrib><creatorcontrib>Maity, Chandan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>van der Mee, Lars</creatorcontrib><creatorcontrib>Minkenberg, Christophe B.</creatorcontrib><creatorcontrib>Mendes, Eduardo</creatorcontrib><creatorcontrib>van Esch, Jan H.</creatorcontrib><creatorcontrib>Eelkema, Rienk</creatorcontrib><title>Catalytic control over supramolecular gel formation</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition. In situ catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.</description><subject>639/638/298/923/1027</subject><subject>639/638/541</subject><subject>639/638/77</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Enzymes</subject><subject>Equilibrium</subject><subject>Gels</subject><subject>Health care</subject><subject>Hydrogels</subject><subject>Inorganic Chemistry</subject><subject>Mechanical properties</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Organic Chemistry</subject><subject>Peptides</subject><subject>Petrochemicals</subject><subject>Petrochemicals industry</subject><subject>Physical Chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0F1LwzAUBuAgipvTG3-AFLwRpTOnadLmUoZfMPBGr0Oans6OtJlJK-zf27k5RK9yIA_vObyEnAOdAmX5bWvesZmCgOyAjCHjPE5ZKg_3M6MjchLCklLBGYhjMkqYoJJKMSZspjtt111tIuPazjsbuU_0UehXXjfOoumt9tECbVQ53-iudu0pOaq0DXi2eyfk7eH-dfYUz18en2d389iwPO9ipJAZxsus0iUVScoBS9RapmhQCEkNB1pyzEqWG14YkWHBE8HSiiaaoizYhFxtc1feffQYOtXUwaC1ukXXBwUs5Rw4CDnQyz906XrfDtdtlBAMmEwGdb1VxrsQPFZq5etG-7UCqjZVqu8q1abKAV_sIvuiwXJPf7obwM0WhOGrXaD_tfN_3BeGu319</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Boekhoven, Job</creator><creator>Poolman, Jos M.</creator><creator>Maity, Chandan</creator><creator>Li, Feng</creator><creator>van der Mee, Lars</creator><creator>Minkenberg, Christophe B.</creator><creator>Mendes, Eduardo</creator><creator>van Esch, Jan H.</creator><creator>Eelkema, Rienk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20130501</creationdate><title>Catalytic control over supramolecular gel formation</title><author>Boekhoven, Job ; Poolman, Jos M. ; Maity, Chandan ; Li, Feng ; van der Mee, Lars ; Minkenberg, Christophe B. ; Mendes, Eduardo ; van Esch, Jan H. ; Eelkema, Rienk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/638/298/923/1027</topic><topic>639/638/541</topic><topic>639/638/77</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Enzymes</topic><topic>Equilibrium</topic><topic>Gels</topic><topic>Health care</topic><topic>Hydrogels</topic><topic>Inorganic Chemistry</topic><topic>Mechanical properties</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Organic Chemistry</topic><topic>Peptides</topic><topic>Petrochemicals</topic><topic>Petrochemicals industry</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boekhoven, Job</creatorcontrib><creatorcontrib>Poolman, Jos M.</creatorcontrib><creatorcontrib>Maity, Chandan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>van der Mee, Lars</creatorcontrib><creatorcontrib>Minkenberg, Christophe B.</creatorcontrib><creatorcontrib>Mendes, Eduardo</creatorcontrib><creatorcontrib>van Esch, Jan H.</creatorcontrib><creatorcontrib>Eelkema, Rienk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boekhoven, Job</au><au>Poolman, Jos M.</au><au>Maity, Chandan</au><au>Li, Feng</au><au>van der Mee, Lars</au><au>Minkenberg, Christophe B.</au><au>Mendes, Eduardo</au><au>van Esch, Jan H.</au><au>Eelkema, Rienk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic control over supramolecular gel formation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>5</volume><issue>5</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition. In situ catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23609096</pmid><doi>10.1038/nchem.1617</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2013-05, Vol.5 (5), p.433-437
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1345515169
source SpringerLink Journals; Nature
subjects 639/638/298/923/1027
639/638/541
639/638/77
Analytical Chemistry
Biochemistry
Catalysis
Chemical bonds
Chemistry
Chemistry/Food Science
Enzymes
Equilibrium
Gels
Health care
Hydrogels
Inorganic Chemistry
Mechanical properties
Molecular weight
Morphology
Organic Chemistry
Peptides
Petrochemicals
Petrochemicals industry
Physical Chemistry
title Catalytic control over supramolecular gel formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20control%20over%20supramolecular%20gel%20formation&rft.jtitle=Nature%20chemistry&rft.au=Boekhoven,%20Job&rft.date=2013-05-01&rft.volume=5&rft.issue=5&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1617&rft_dat=%3Cproquest_cross%3E1345515169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346631392&rft_id=info:pmid/23609096&rfr_iscdi=true