Catalytic control over supramolecular gel formation
Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here w...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2013-05, Vol.5 (5), p.433-437 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 437 |
---|---|
container_issue | 5 |
container_start_page | 433 |
container_title | Nature chemistry |
container_volume | 5 |
creator | Boekhoven, Job Poolman, Jos M. Maity, Chandan Li, Feng van der Mee, Lars Minkenberg, Christophe B. Mendes, Eduardo van Esch, Jan H. Eelkema, Rienk |
description | Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how
in situ
catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.
In situ
catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks. |
doi_str_mv | 10.1038/nchem.1617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1345515169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1345515169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</originalsourceid><addsrcrecordid>eNpl0F1LwzAUBuAgipvTG3-AFLwRpTOnadLmUoZfMPBGr0Oans6OtJlJK-zf27k5RK9yIA_vObyEnAOdAmX5bWvesZmCgOyAjCHjPE5ZKg_3M6MjchLCklLBGYhjMkqYoJJKMSZspjtt111tIuPazjsbuU_0UehXXjfOoumt9tECbVQ53-iudu0pOaq0DXi2eyfk7eH-dfYUz18en2d389iwPO9ipJAZxsus0iUVScoBS9RapmhQCEkNB1pyzEqWG14YkWHBE8HSiiaaoizYhFxtc1feffQYOtXUwaC1ukXXBwUs5Rw4CDnQyz906XrfDtdtlBAMmEwGdb1VxrsQPFZq5etG-7UCqjZVqu8q1abKAV_sIvuiwXJPf7obwM0WhOGrXaD_tfN_3BeGu319</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346631392</pqid></control><display><type>article</type><title>Catalytic control over supramolecular gel formation</title><source>SpringerLink Journals</source><source>Nature</source><creator>Boekhoven, Job ; Poolman, Jos M. ; Maity, Chandan ; Li, Feng ; van der Mee, Lars ; Minkenberg, Christophe B. ; Mendes, Eduardo ; van Esch, Jan H. ; Eelkema, Rienk</creator><creatorcontrib>Boekhoven, Job ; Poolman, Jos M. ; Maity, Chandan ; Li, Feng ; van der Mee, Lars ; Minkenberg, Christophe B. ; Mendes, Eduardo ; van Esch, Jan H. ; Eelkema, Rienk</creatorcontrib><description>Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how
in situ
catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.
In situ
catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1617</identifier><identifier>PMID: 23609096</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/298/923/1027 ; 639/638/541 ; 639/638/77 ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemical bonds ; Chemistry ; Chemistry/Food Science ; Enzymes ; Equilibrium ; Gels ; Health care ; Hydrogels ; Inorganic Chemistry ; Mechanical properties ; Molecular weight ; Morphology ; Organic Chemistry ; Peptides ; Petrochemicals ; Petrochemicals industry ; Physical Chemistry</subject><ispartof>Nature chemistry, 2013-05, Vol.5 (5), p.433-437</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group May 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</citedby><cites>FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.1617$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.1617$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23609096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boekhoven, Job</creatorcontrib><creatorcontrib>Poolman, Jos M.</creatorcontrib><creatorcontrib>Maity, Chandan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>van der Mee, Lars</creatorcontrib><creatorcontrib>Minkenberg, Christophe B.</creatorcontrib><creatorcontrib>Mendes, Eduardo</creatorcontrib><creatorcontrib>van Esch, Jan H.</creatorcontrib><creatorcontrib>Eelkema, Rienk</creatorcontrib><title>Catalytic control over supramolecular gel formation</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how
in situ
catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.
In situ
catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.</description><subject>639/638/298/923/1027</subject><subject>639/638/541</subject><subject>639/638/77</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Enzymes</subject><subject>Equilibrium</subject><subject>Gels</subject><subject>Health care</subject><subject>Hydrogels</subject><subject>Inorganic Chemistry</subject><subject>Mechanical properties</subject><subject>Molecular weight</subject><subject>Morphology</subject><subject>Organic Chemistry</subject><subject>Peptides</subject><subject>Petrochemicals</subject><subject>Petrochemicals industry</subject><subject>Physical Chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0F1LwzAUBuAgipvTG3-AFLwRpTOnadLmUoZfMPBGr0Oans6OtJlJK-zf27k5RK9yIA_vObyEnAOdAmX5bWvesZmCgOyAjCHjPE5ZKg_3M6MjchLCklLBGYhjMkqYoJJKMSZspjtt111tIuPazjsbuU_0UehXXjfOoumt9tECbVQ53-iudu0pOaq0DXi2eyfk7eH-dfYUz18en2d389iwPO9ipJAZxsus0iUVScoBS9RapmhQCEkNB1pyzEqWG14YkWHBE8HSiiaaoizYhFxtc1feffQYOtXUwaC1ukXXBwUs5Rw4CDnQyz906XrfDtdtlBAMmEwGdb1VxrsQPFZq5etG-7UCqjZVqu8q1abKAV_sIvuiwXJPf7obwM0WhOGrXaD_tfN_3BeGu319</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Boekhoven, Job</creator><creator>Poolman, Jos M.</creator><creator>Maity, Chandan</creator><creator>Li, Feng</creator><creator>van der Mee, Lars</creator><creator>Minkenberg, Christophe B.</creator><creator>Mendes, Eduardo</creator><creator>van Esch, Jan H.</creator><creator>Eelkema, Rienk</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20130501</creationdate><title>Catalytic control over supramolecular gel formation</title><author>Boekhoven, Job ; Poolman, Jos M. ; Maity, Chandan ; Li, Feng ; van der Mee, Lars ; Minkenberg, Christophe B. ; Mendes, Eduardo ; van Esch, Jan H. ; Eelkema, Rienk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-e017c35d7fad062451edeaa94ece6690c510d5e7d38c5bc67eb52634f02a0e9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/638/298/923/1027</topic><topic>639/638/541</topic><topic>639/638/77</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Enzymes</topic><topic>Equilibrium</topic><topic>Gels</topic><topic>Health care</topic><topic>Hydrogels</topic><topic>Inorganic Chemistry</topic><topic>Mechanical properties</topic><topic>Molecular weight</topic><topic>Morphology</topic><topic>Organic Chemistry</topic><topic>Peptides</topic><topic>Petrochemicals</topic><topic>Petrochemicals industry</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boekhoven, Job</creatorcontrib><creatorcontrib>Poolman, Jos M.</creatorcontrib><creatorcontrib>Maity, Chandan</creatorcontrib><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>van der Mee, Lars</creatorcontrib><creatorcontrib>Minkenberg, Christophe B.</creatorcontrib><creatorcontrib>Mendes, Eduardo</creatorcontrib><creatorcontrib>van Esch, Jan H.</creatorcontrib><creatorcontrib>Eelkema, Rienk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boekhoven, Job</au><au>Poolman, Jos M.</au><au>Maity, Chandan</au><au>Li, Feng</au><au>van der Mee, Lars</au><au>Minkenberg, Christophe B.</au><au>Mendes, Eduardo</au><au>van Esch, Jan H.</au><au>Eelkema, Rienk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic control over supramolecular gel formation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2013-05-01</date><risdate>2013</risdate><volume>5</volume><issue>5</issue><spage>433</spage><epage>437</epage><pages>433-437</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how
in situ
catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition.
In situ
catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23609096</pmid><doi>10.1038/nchem.1617</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2013-05, Vol.5 (5), p.433-437 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1345515169 |
source | SpringerLink Journals; Nature |
subjects | 639/638/298/923/1027 639/638/541 639/638/77 Analytical Chemistry Biochemistry Catalysis Chemical bonds Chemistry Chemistry/Food Science Enzymes Equilibrium Gels Health care Hydrogels Inorganic Chemistry Mechanical properties Molecular weight Morphology Organic Chemistry Peptides Petrochemicals Petrochemicals industry Physical Chemistry |
title | Catalytic control over supramolecular gel formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20control%20over%20supramolecular%20gel%20formation&rft.jtitle=Nature%20chemistry&rft.au=Boekhoven,%20Job&rft.date=2013-05-01&rft.volume=5&rft.issue=5&rft.spage=433&rft.epage=437&rft.pages=433-437&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1617&rft_dat=%3Cproquest_cross%3E1345515169%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346631392&rft_id=info:pmid/23609096&rfr_iscdi=true |