Catalytic control over supramolecular gel formation

Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2013-05, Vol.5 (5), p.433-437
Hauptverfasser: Boekhoven, Job, Poolman, Jos M., Maity, Chandan, Li, Feng, van der Mee, Lars, Minkenberg, Christophe B., Mendes, Eduardo, van Esch, Jan H., Eelkema, Rienk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-molecular-weight gels show great potential for application in fields ranging from the petrochemical industry to healthcare and tissue engineering. These supramolecular gels are often metastable materials, which implies that their properties are, at least partially, kinetically controlled. Here we show how the mechanical properties and structure of these materials can be controlled directly by catalytic action. We show how in situ catalysis of the formation of gelator molecules can be used to accelerate the formation of supramolecular hydrogels, which drastically enhances their resulting mechanical properties. Using acid or nucleophilic aniline catalysis, it is possible to make supramolecular hydrogels with tunable gel-strength in a matter of minutes, under ambient conditions, starting from simple soluble building blocks. By changing the rate of formation of the gelator molecules using a catalyst, the overall rate of gelation and the resulting gel morphology are affected, which provides access to metastable gel states with improved mechanical strength and appearance despite an identical gelator composition. In situ catalysis of the formation of gelator molecules provides access to metastable gel states with improved mechanical strength compared with uncatalysed gels that have an identical composition. Acid or aniline catalysis enables the formation of hydrogels with tunable gel-strength in a matter of minutes under ambient conditions from simple building blocks.
ISSN:1755-4330
1755-4349
DOI:10.1038/nchem.1617