Comparison of biofilm formation and water quality when water from different sources was stored in large commercial water storage tanks

Rain-, ground- and municipal potable water were stored in low density polyethylene storage tanks for a period of 90 days to determine the effects of long-term storage on the deterioration in the microbial quality of the water. Total viable bacteria present in the stored water and the resultant biofi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water and health 2013-03, Vol.11 (1), p.30-40
Hauptverfasser: DER MERWE, Venessa Van, DUVENAGE, Stacey, KORSTEN, Lise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rain-, ground- and municipal potable water were stored in low density polyethylene storage tanks for a period of 90 days to determine the effects of long-term storage on the deterioration in the microbial quality of the water. Total viable bacteria present in the stored water and the resultant biofilms were enumerated using heterotrophic plate counts. Polymerase chain reaction (PCR) and Colilert-18(®) tests were performed to determine if the faecal indicator bacteria Escherichia coli was present in the water and in the biofilm samples collected throughout the study. The municipal potable water at the start of the study was the only water source that conformed to the South African Water Quality Guidelines for Domestic Use. After 15 days of storage, this water source had deteriorated microbiologically to levels considered unfit for human consumption. E. coli was detected in the ground- and potable water and ground- and potable biofilms periodically, whereas it was detected in the rainwater and associated biofilms at every sampling point. Imperfections in the UV resistant inner lining of the tanks were shown to be ecological niches for microbial colonisation and biofilm development. The results from the current study confirmed that long-term storage can influence water quality and increase the number of microbial cells associated with biofilms on the interior surfaces of water storage tanks.
ISSN:1477-8920
1996-7829
DOI:10.2166/wh.2012.014