A strong approximation of self-normalized sums

Let {X, Xn,n ≥ 1} be a sequence of independent identically distributed random variables with EX = 0 and assume that EX2I(|X| ≤ x) is slowly varying as x → ∞, i.e., X is in the domain of attraction of the normal law. In this paper a Strassen-type strong approximation is established for self-normalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2013-01, Vol.56 (1), p.149-160
Hauptverfasser: Csörgő, Miklós, Hu, ZhiShui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let {X, Xn,n ≥ 1} be a sequence of independent identically distributed random variables with EX = 0 and assume that EX2I(|X| ≤ x) is slowly varying as x → ∞, i.e., X is in the domain of attraction of the normal law. In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables.
ISSN:1674-7283
1006-9283
1869-1862
DOI:10.1007/s11425-012-4434-7