A strong approximation of self-normalized sums
Let {X, Xn,n ≥ 1} be a sequence of independent identically distributed random variables with EX = 0 and assume that EX2I(|X| ≤ x) is slowly varying as x → ∞, i.e., X is in the domain of attraction of the normal law. In this paper a Strassen-type strong approximation is established for self-normalize...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2013-01, Vol.56 (1), p.149-160 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let {X, Xn,n ≥ 1} be a sequence of independent identically distributed random variables with EX = 0 and assume that EX2I(|X| ≤ x) is slowly varying as x → ∞, i.e., X is in the domain of attraction of the normal law. In this paper a Strassen-type strong approximation is established for self-normalized sums of such random variables. |
---|---|
ISSN: | 1674-7283 1006-9283 1869-1862 |
DOI: | 10.1007/s11425-012-4434-7 |