Testing the independence of sets of large-dimensional variables

This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2013-01, Vol.56 (1), p.135-147
Hauptverfasser: Jiang, DanDan, Bai, ZhiDong, Zheng, ShuRong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 135
container_title Science China. Mathematics
container_volume 56
creator Jiang, DanDan
Bai, ZhiDong
Zheng, ShuRong
description This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.
doi_str_mv 10.1007/s11425-012-4501-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1328514255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44398280</cqvip_id><sourcerecordid>1677977086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</originalsourceid><addsrcrecordid>eNqFkT9vwyAQxa2qlRql-QDd3K0LLXBgYKqqqP-kSF3SGRH77DhycAJOpX77YiXq2DDcIfF7HLyXZbeMPjBK1WNkTHBJKONESMoIvcgmTBeGpMIv075Qgiiu4TqbxbihaYGhQsEke1piHFrf5MMa89ZXuMNUfIl5X-cRhzj2zoUGSdVu0ce2967Lv11o3arDeJNd1a6LODv1afb1-rKcv5PF59vH_HlBSsFgIDXUWBjNpZJOlIBVyaB0IDkKYCsuBDeVBjCqUsoIAFrJsnB1OpAVV2Bgmt0f792Ffn9Ib7bbNpbYdc5jf4g2fVEZpaguzqOyKLQUtODnUeBajt7KhLIjWoY-xoC13YV268KPZdSOKdhjCjalYMcULE0aftTExPoGg930h5D8i_-K7k6D1r1v9kn3N0kISB5qCr-O0pJN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328514255</pqid></control><display><type>article</type><title>Testing the independence of sets of large-dimensional variables</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Jiang, DanDan ; Bai, ZhiDong ; Zheng, ShuRong</creator><creatorcontrib>Jiang, DanDan ; Bai, ZhiDong ; Zheng, ShuRong</creatorcontrib><description>This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4501-0</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; Approximation ; Astronomy ; Criteria ; Likelihood ratio ; LRT ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Series (mathematics) ; Simulation ; 仿真结果 ; 似然比检验 ; 多元变量 ; 尺寸 ; 无穷大 ; 样本大小 ; 测试套</subject><ispartof>Science China. Mathematics, 2013-01, Vol.56 (1), p.135-147</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</citedby><cites>FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4501-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4501-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Jiang, DanDan</creatorcontrib><creatorcontrib>Bai, ZhiDong</creatorcontrib><creatorcontrib>Zheng, ShuRong</creatorcontrib><title>Testing the independence of sets of large-dimensional variables</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Astronomy</subject><subject>Criteria</subject><subject>Likelihood ratio</subject><subject>LRT</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Series (mathematics)</subject><subject>Simulation</subject><subject>仿真结果</subject><subject>似然比检验</subject><subject>多元变量</subject><subject>尺寸</subject><subject>无穷大</subject><subject>样本大小</subject><subject>测试套</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkT9vwyAQxa2qlRql-QDd3K0LLXBgYKqqqP-kSF3SGRH77DhycAJOpX77YiXq2DDcIfF7HLyXZbeMPjBK1WNkTHBJKONESMoIvcgmTBeGpMIv075Qgiiu4TqbxbihaYGhQsEke1piHFrf5MMa89ZXuMNUfIl5X-cRhzj2zoUGSdVu0ce2967Lv11o3arDeJNd1a6LODv1afb1-rKcv5PF59vH_HlBSsFgIDXUWBjNpZJOlIBVyaB0IDkKYCsuBDeVBjCqUsoIAFrJsnB1OpAVV2Bgmt0f792Ffn9Ib7bbNpbYdc5jf4g2fVEZpaguzqOyKLQUtODnUeBajt7KhLIjWoY-xoC13YV268KPZdSOKdhjCjalYMcULE0aftTExPoGg930h5D8i_-K7k6D1r1v9kn3N0kISB5qCr-O0pJN</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jiang, DanDan</creator><creator>Bai, ZhiDong</creator><creator>Zheng, ShuRong</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130101</creationdate><title>Testing the independence of sets of large-dimensional variables</title><author>Jiang, DanDan ; Bai, ZhiDong ; Zheng, ShuRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Astronomy</topic><topic>Criteria</topic><topic>Likelihood ratio</topic><topic>LRT</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Series (mathematics)</topic><topic>Simulation</topic><topic>仿真结果</topic><topic>似然比检验</topic><topic>多元变量</topic><topic>尺寸</topic><topic>无穷大</topic><topic>样本大小</topic><topic>测试套</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, DanDan</creatorcontrib><creatorcontrib>Bai, ZhiDong</creatorcontrib><creatorcontrib>Zheng, ShuRong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, DanDan</au><au>Bai, ZhiDong</au><au>Zheng, ShuRong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the independence of sets of large-dimensional variables</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>56</volume><issue>1</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4501-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7283
ispartof Science China. Mathematics, 2013-01, Vol.56 (1), p.135-147
issn 1674-7283
1006-9283
1869-1862
language eng
recordid cdi_proquest_miscellaneous_1328514255
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Applications of Mathematics
Approximation
Astronomy
Criteria
Likelihood ratio
LRT
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Series (mathematics)
Simulation
仿真结果
似然比检验
多元变量
尺寸
无穷大
样本大小
测试套
title Testing the independence of sets of large-dimensional variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20independence%20of%20sets%20of%20large-dimensional%20variables&rft.jtitle=Science%20China.%20Mathematics&rft.au=Jiang,%20DanDan&rft.date=2013-01-01&rft.volume=56&rft.issue=1&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4501-0&rft_dat=%3Cproquest_cross%3E1677977086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1328514255&rft_id=info:pmid/&rft_cqvip_id=44398280&rfr_iscdi=true