Testing the independence of sets of large-dimensional variables
This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. B...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2013-01, Vol.56 (1), p.135-147 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Science China. Mathematics |
container_volume | 56 |
creator | Jiang, DanDan Bai, ZhiDong Zheng, ShuRong |
description | This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition. |
doi_str_mv | 10.1007/s11425-012-4501-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1328514255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>44398280</cqvip_id><sourcerecordid>1677977086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</originalsourceid><addsrcrecordid>eNqFkT9vwyAQxa2qlRql-QDd3K0LLXBgYKqqqP-kSF3SGRH77DhycAJOpX77YiXq2DDcIfF7HLyXZbeMPjBK1WNkTHBJKONESMoIvcgmTBeGpMIv075Qgiiu4TqbxbihaYGhQsEke1piHFrf5MMa89ZXuMNUfIl5X-cRhzj2zoUGSdVu0ce2967Lv11o3arDeJNd1a6LODv1afb1-rKcv5PF59vH_HlBSsFgIDXUWBjNpZJOlIBVyaB0IDkKYCsuBDeVBjCqUsoIAFrJsnB1OpAVV2Bgmt0f792Ffn9Ib7bbNpbYdc5jf4g2fVEZpaguzqOyKLQUtODnUeBajt7KhLIjWoY-xoC13YV268KPZdSOKdhjCjalYMcULE0aftTExPoGg930h5D8i_-K7k6D1r1v9kn3N0kISB5qCr-O0pJN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328514255</pqid></control><display><type>article</type><title>Testing the independence of sets of large-dimensional variables</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Jiang, DanDan ; Bai, ZhiDong ; Zheng, ShuRong</creator><creatorcontrib>Jiang, DanDan ; Bai, ZhiDong ; Zheng, ShuRong</creatorcontrib><description>This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.</description><identifier>ISSN: 1674-7283</identifier><identifier>ISSN: 1006-9283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-012-4501-0</identifier><language>eng</language><publisher>Heidelberg: SP Science China Press</publisher><subject>Applications of Mathematics ; Approximation ; Astronomy ; Criteria ; Likelihood ratio ; LRT ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Series (mathematics) ; Simulation ; 仿真结果 ; 似然比检验 ; 多元变量 ; 尺寸 ; 无穷大 ; 样本大小 ; 测试套</subject><ispartof>Science China. Mathematics, 2013-01, Vol.56 (1), p.135-147</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</citedby><cites>FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-012-4501-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-012-4501-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Jiang, DanDan</creatorcontrib><creatorcontrib>Bai, ZhiDong</creatorcontrib><creatorcontrib>Zheng, ShuRong</creatorcontrib><title>Testing the independence of sets of large-dimensional variables</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.</description><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Astronomy</subject><subject>Criteria</subject><subject>Likelihood ratio</subject><subject>LRT</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Series (mathematics)</subject><subject>Simulation</subject><subject>仿真结果</subject><subject>似然比检验</subject><subject>多元变量</subject><subject>尺寸</subject><subject>无穷大</subject><subject>样本大小</subject><subject>测试套</subject><issn>1674-7283</issn><issn>1006-9283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkT9vwyAQxa2qlRql-QDd3K0LLXBgYKqqqP-kSF3SGRH77DhycAJOpX77YiXq2DDcIfF7HLyXZbeMPjBK1WNkTHBJKONESMoIvcgmTBeGpMIv075Qgiiu4TqbxbihaYGhQsEke1piHFrf5MMa89ZXuMNUfIl5X-cRhzj2zoUGSdVu0ce2967Lv11o3arDeJNd1a6LODv1afb1-rKcv5PF59vH_HlBSsFgIDXUWBjNpZJOlIBVyaB0IDkKYCsuBDeVBjCqUsoIAFrJsnB1OpAVV2Bgmt0f792Ffn9Ib7bbNpbYdc5jf4g2fVEZpaguzqOyKLQUtODnUeBajt7KhLIjWoY-xoC13YV268KPZdSOKdhjCjalYMcULE0aftTExPoGg930h5D8i_-K7k6D1r1v9kn3N0kISB5qCr-O0pJN</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jiang, DanDan</creator><creator>Bai, ZhiDong</creator><creator>Zheng, ShuRong</creator><general>SP Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130101</creationdate><title>Testing the independence of sets of large-dimensional variables</title><author>Jiang, DanDan ; Bai, ZhiDong ; Zheng, ShuRong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-f3fe6982575a4c3edc13ca352e431b24429d83397d7794330d5c6af2445d27393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Astronomy</topic><topic>Criteria</topic><topic>Likelihood ratio</topic><topic>LRT</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Series (mathematics)</topic><topic>Simulation</topic><topic>仿真结果</topic><topic>似然比检验</topic><topic>多元变量</topic><topic>尺寸</topic><topic>无穷大</topic><topic>样本大小</topic><topic>测试套</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, DanDan</creatorcontrib><creatorcontrib>Bai, ZhiDong</creatorcontrib><creatorcontrib>Zheng, ShuRong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, DanDan</au><au>Bai, ZhiDong</au><au>Zheng, ShuRong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing the independence of sets of large-dimensional variables</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>56</volume><issue>1</issue><spage>135</spage><epage>147</epage><pages>135-147</pages><issn>1674-7283</issn><issn>1006-9283</issn><eissn>1869-1862</eissn><abstract>This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.</abstract><cop>Heidelberg</cop><pub>SP Science China Press</pub><doi>10.1007/s11425-012-4501-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2013-01, Vol.56 (1), p.135-147 |
issn | 1674-7283 1006-9283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1328514255 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Approximation Astronomy Criteria Likelihood ratio LRT Mathematical analysis Mathematical models Mathematics Mathematics and Statistics Series (mathematics) Simulation 仿真结果 似然比检验 多元变量 尺寸 无穷大 样本大小 测试套 |
title | Testing the independence of sets of large-dimensional variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20the%20independence%20of%20sets%20of%20large-dimensional%20variables&rft.jtitle=Science%20China.%20Mathematics&rft.au=Jiang,%20DanDan&rft.date=2013-01-01&rft.volume=56&rft.issue=1&rft.spage=135&rft.epage=147&rft.pages=135-147&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-012-4501-0&rft_dat=%3Cproquest_cross%3E1677977086%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1328514255&rft_id=info:pmid/&rft_cqvip_id=44398280&rfr_iscdi=true |