Testing the independence of sets of large-dimensional variables

This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2013-01, Vol.56 (1), p.135-147
Hauptverfasser: Jiang, DanDan, Bai, ZhiDong, Zheng, ShuRong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition.
ISSN:1674-7283
1006-9283
1869-1862
DOI:10.1007/s11425-012-4501-0