Testing the independence of sets of large-dimensional variables
This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. B...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2013-01, Vol.56 (1), p.135-147 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes the corrected likelihood ratio test (LRT) and large-dimensional trace criterion to test the independence of two large sets of multivariate variables of dimensions P1 and P2 when the dimensions P = P1 + P2 and the sample size n tend to infinity simultaneously and proportionally. Both theoretical and simulation results demonstrate that the traditional X2 approximation of the LRT performs poorly when the dimension p is large relative to the sample size n, while the corrected LRT and large-dimensional trace criterion behave well when the dimension is either small or large relative to the sample size. Moreover, the trace criterion can be used in the case of p 〉 n, while the corrected LRT is unfeasible due to the loss of definition. |
---|---|
ISSN: | 1674-7283 1006-9283 1869-1862 |
DOI: | 10.1007/s11425-012-4501-0 |