A General Model for Kinetics of Heavy Metal Adsorption and Desorption on Soils

In this study, we propose a general kinetics model for heavy metal adsorption and desorption reactions in soils when soil organic matter (SOM) is the dominant adsorbent. The kinetics model, integrated with the equilibrium speciation model WHAM VI, specifically considers metal reactions with SOM and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2013-04, Vol.47 (8), p.3761-3767
Hauptverfasser: Shi, Zhenqing, Di Toro, Dominic M, Allen, Herbert E, Sparks, Donald L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we propose a general kinetics model for heavy metal adsorption and desorption reactions in soils when soil organic matter (SOM) is the dominant adsorbent. The kinetics model, integrated with the equilibrium speciation model WHAM VI, specifically considers metal reactions with SOM and dissolved organic matter (DOM) and accounts for the variations of solution chemistry. Metal reactions with SOM are associated with two groups of sites, one from the monodentate sites and another one from the bidentate and tridentate sites. There are three model parameters, desorption rate coefficients of the two groups of SOM sites for each metal and reactive organic carbon (ROC) for each soil. The applicability of the kinetics model was mainly examined with three elements, Cu, Pb, and Zn, which demonstrate different binding ability with organic matter. The kinetic data were collected with a stirred-flow reactor covering a wide range of experimental conditions, including varying SOM, DOM, Ca, and metal concentrations, reaction pHs, and different flow rates. The kinetics model has been successfully applied to describe heavy metal adsorption and desorption on soils under various reaction conditions.
ISSN:0013-936X
1520-5851
DOI:10.1021/es304524p