Small-molecule inhibitors of cathepsin L incorporating functionalized ring-fused molecular frameworks

Cathepsin L is a cysteine protease that is upregulated in a variety of malignant tumors and plays a significant role in cancer cell invasion and migration. It is an attractive target for the development of small-molecule inhibitors, which may prove beneficial as treatment agents to limit or arrest c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry letters 2013-05, Vol.23 (9), p.2801-2807
Hauptverfasser: Song, Jiangli, Jones, Lindsay M., Chavarria, Gustavo E., Charlton-Sevcik, Amanda K., Jantz, Adam, Johansen, Audra, Bayeh, Liela, Soeung, Victoria, Snyder, Lindsey K., Lade, Shawn D., Chaplin, David J., Trawick, Mary Lynn, Pinney, Kevin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cathepsin L is a cysteine protease that is upregulated in a variety of malignant tumors and plays a significant role in cancer cell invasion and migration. It is an attractive target for the development of small-molecule inhibitors, which may prove beneficial as treatment agents to limit or arrest cancer metastasis. We have previously identified a structurally diverse series of thiosemicarbazone-based inhibitors that incorporate the benzophenone and thiochromanone molecular scaffolds. Herein we report an important extension of this work designed to explore fused aryl–alkyl ring molecular systems that feature nitrogen atom incorporation (dihydroquinoline-based) and carbon atom exclusivity (tetrahydronaphthalene-based). In addition, analogues that contain oxygen (chromanone-based), sulfur (thiochroman-based), sulfoxide, and sulfone functionalization have been prepared in order to further investigate the structure–activity relationship aspects associated with these compounds and their ability to inhibit cathepsins L and B. From this small-library of 30 compounds, five were found to be strongly inhibitory (IC50 10,000nM) as inhibitors of cathepsin B, thus establishing a high degree (>20-fold) of selectivity (cathepsin L vs. cathepsin B) for the most active cathepsin L inhibitors in this series.
ISSN:0960-894X
1464-3405
DOI:10.1016/j.bmcl.2012.12.025